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Executive Summary of " Vibration Dynamics and Control of Bladed Disk Assemblies"

This final report documents the work performed at Purdue University during the period of
November 1988 to December 1990. The original AFOSR Contracts (#AFOSR-89-0002,
AFOSR-89-0014) were written for two years. Consequently this research was partially funded
from Professor Nwokahs’ PRF grant #670-1667. The objective of the proposed research was to
gain a fundamental understanding of how and why periodically configured mechanical and
structural systems, (in particular bladed-disk assemblies) with cyclic symmetry and nominally
identical sub-structures can display non-uniform amplitudes of vibration when subjected to small
but random parameter perturbations that are often within the component manufacturing
tolerances. A secondary aim of the proposal was to determine ways of passively/actively (if
possible) controlling these uneven vibration amplitudes. This work specifically dealt with the
influence of the double (degenerate) eigenvalues present in every cyclic mechanical system and
their subsequent splitting under small perturbations, on the uneven vibration amplitudes of the

components.

Status:

The work associated with the principal objectives of the project is almost completed and is
included in this final report. The procedure for detecting a priori which degenerate eigenvalue
pairs will split under given parameter perturbations has been formalized by use of finite group
representation theory and is presented in Appendix 1. The procedure for accurately unfolding
the singularities induced by the splitting of the double modes of cyclic systems has been

formalized by the use of a singular perturbation analysis technique which is valid for any finite

order cyclic system and is included in Appendix 2.




The topological basis for the singularities induced by the double modes and the

consequences there of are carefuily examined and detailed in Appendix 3.

In contra-distinction from recent work in the bladed-disk research literature, numerical
studies which show that uneven amplitudes of vibration in perturbed cyclic systems can arise

both under strong coupling as well as the weak coupling conditions is included in Appendix 4.

A systematic framework has now been established for a detailed study of perturbed cyclic
systems. Future efforts will be aimed at completing any remaining theoretical analysis,
development of computational algorithms for such analysis, passive structural redesign to avoid

localized high vibration amplitudes and experimental validation of the analytical results.

Publications

Six papers have been developed from this work. The first is essentially Appendix 1. The
second and third are included in Appendix 2. The fourth is given in Appendix 3, while the rest

are in conference proceedings as given below.

I. Happawana, G.S., Bajaj, A.K., Nwokah, O.D.I., On the dynamics of perturbed symmetric
systems. Accepted for presentation and publication in conference proceedings for 13th
Biennial ASME Conference on Mechanical Vibration and Noise, September 22-25, 1991,

Miami, Florida.

~

Happawana, G.S., Bajaj, A.K., Nwokah, O.D.1, A singular perturbation perspective on

mode localization. J. Sound and Vibration, (To appear).

3. Happawana, G.S., Bajaj, A.K., Nwokah, O.D.I.,, A singular perturbation analysis of

eigenvalue veering and mode localization in linear chain and cyclic systems.




J. Sound and Vibration, (Submitted).

4. Nwokah, O.D.I, Afolabi, D., Damra, F.M., On the modal stability of imperfect cyclic

systems. Control and Dynamic Systems, 35, 137-164, 1990.

5. Afolabi, D., Nwokah, O.D.I., The frequency response of mistuned periodic systems. Proc.

12th ASME Biennial Vibrations Conference, Montreal, Canada, September 1989.

6. Afolabi, D., Nwokah, O.D.I., Effects of mild perturbations on the dynamics of structures
with circulant matrices. Proc. AIAA/ASME/ASCE/AHS Structures, Structural Dynamics

and Materials Conference, Long Beach, CA, 1990.
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1. INTRODUCTION

1.1 Problem Statement
The central aim of the present project has been to:

(1) Gain a fundamental understanding of how and why periodically configured mechanical
and structural systems with cyclic symmetry and nominally identical sub-structures can
display non-uniform amplitudes of vibration under differential (i.e., small) parameter

perturbations that are often within the component manufacturing tolerances.

(ii)) Design passive and/or active control mechanisms to overcome such possible uneven

amplitudes of vibrations.

1.2 Background and Overview

The study of cyclically configured dynamical systems, otherwise known as bladed-disk
assemblies, has been a very active area of research in structural dynamics over the last 25 years.
It is a measure of the theoretical difficulties involved in an accurate analysis that at the present
time there is no general agreement in the literature as to either the causes of the uneven
component vibration amplitudes or as to which component will vibrate with the highest
amplitude under parameter variations. This is a sine’ qua-non to establishing benchmark
specifications for component vibration control. The work performed under this grant in the last

two years clearly indicates that:

(i) Uneven amplitudes of vibration are caused by the modal bifurcation phenomenon or the
sensitive dependence of eigenvectors on small parameter variations under some clearly

defined conditions. [1,2,3]




(i) Modal bifurcations in turn are caused by mistuning or small parameter variations from

nominal design values, which are often within the component manufacturing tolerances.

4]

(iii) Extreme cases of the uneven amplitudes of component vibrations produce the mode

localization phenomenon.

We had shown in the paper in Appendix 3, that very useful qualitative information on
the blade mistuning could be obtained by application of the methodology of singularity

theory to this problem.
To understand mode localization, one must first study modal bifurcations.

Let p e I' © R, where R" is an r-dimensional parameter space. If a given structural system
has n degrees of freedom, then the characteristic equation for natural frequencies, w? = A, can be

written as the n-th order polynomial equation:
GA,w=0,forsomepel.

It turns out that the characteristic polynomial under appropriate modifications behaves like the
potential function in singularity (or catastrophe) theory. [S] Hence the degenerate critical points

of G(A, W) = 0 correspond to the repeated roots (i.e., the repeated eigenvalues) of G(A , p). By
. adG . : . : :
studying e together with appropriate higher order differentials, and G(A, ) = 0, we can

determine the set of all p € " at which G(A, p) has degenerate eigenvalues. This set, which is
called the bifurcation (or catastrophe) set, partitions the parameter space I into distinct

submanifolds whose boundary is the bifurcation set.

We can conclude from the basic theorems and results from singularity theory and catastrophe




theory [6,7,8] that the modal behavior of our structural system displays sensitive dependence on
parameters only in the neighborhood of the bifurcation set. We have identified two distinct

degenerate behavior patterns in structural systems, namely:
a) Coupling induced degeneracy,

b) Geometry or symmetry induced degeneracy.
Furthermore, we have noted that one dimensional lattice type periodic structures need to be

divided into two main classes:
(i) The Linear Chain,

(ii)) The Cyclic Chain.

Each of these classes has its own peculiar characteristics which are dictated both by the
geometry (boundary conditions) and the physics of the system. For example, in the linear chain,
degenerate and therefore ‘seemingly’ unpredictable behavior under perturbations appears to
occur only under very weak coupling conditions. Topologically, this behavior is equivalent to
an unfolding of the m-fold (here m is the number of nominally identical subsystems which are
weakly coupled) degeneracy: (A - @?)™ =0. This corresponds to what Pierre has, in a series of
papers, consistently referred to as a perturbation of the uncoupled system behavior. {9,10,11]

This behavior does not exist under strong coupling conditions.

On the other hand for cyclic systems, even under very strong coupling conditions, extra
degeneracy is induced by the cyclic symmetric nature of the system matrices. It is then well
known that cyclic systems have several pairs of degenerate (coincident) eigenvalues which is
distinct from the case of linear chairs where no degeneracy or multiplicity of eigenvalues arises

under strong coupling conditions. The crucial observation is that because of the coincidence of




eigenvalues, and the continuity of eigenvalues with respect to parameters, cyclic systems (to

which bladed-disk assemblies belong) always operate in the neighborhood of the bifurcation set.

For cyclic systems it is therefore of great interest to determine the relative influence of coupling
and geometry in the subsequent degenerate system behavior. Since a tuned bladed-disk assembly
has pairs of degenerate eigenvalues, the parameters corresponding to the tuned state are clearly a

subset of the bifurcation set.

The number of degenerate pairs of eigenvalues as well as the effect of different types of
perturbations depends on the nature of the symmetry. Some of the qualitative ramifications of
the geometric symmetry can be studied using the theory of groups. The effects of symmetry
preserving and symmetry breaking perturbations can be qualitatively studied using the ideas
from perturbation of group action as well as the singularity theory for symmetric systems. While
the results for universal unfolding of positive definite matrices and the behavior of eigenvalues
for symmetry preserving perturbations are available [15], those for perturbations that destroy
symmetry are not, and we will later present some examples displaying the interesting
consequences of various types of perturbations. Finally, neither the group theory, nor the
singularity theory, provide quantitative results such as formulas for the computation of the
perturbed eigenvalues and eigenvectors as a function of the perturbation parameters. Only such
information can provide the measures for eigenvalue loci veering and mode localization, and one
possible tool for developing these expressions/results is the singular perturbation theory. Thus,
tools or ideas from the disciplines of group theory, singularity theory, and singular perturbation
theory, are all needed to make a strong headway in understanding the phenomenon of mode

localization.




2. GROUP THEORY AND CYCLIC SYMMETRY

Although it had been observed that turned bladed-disk assemblies always have many pairs of
degenerate eigenvalues, no theoretical justification for this phenomenon was available in the
bladed-disk literature. Our first order of business in the investigation was therefore to obtain a
formal explanation for this phenomenon. The coefficient matrices in the equations of motion of
forced bladed-disk assemblies as well as the dynamic stiffness matrices are always banded
circulant matrices [12]. These matrices have unique symmetry propertes [13] which
immediately indicate that group theory would be applicable. It turns out that the set of allowed
symmetry operations in a bladed-disk assembly namely: rotations about a fixed axis, reflections
about a fixed axis and vibrations about a reference point, can be captured by the operations of the
Dihedral group D, [14]. By purely formal arguments from group theory and standard results for
the Dihedral group, we are able to show the number and order of degenerate eigenvalues which
any finite order bladed-disk assembly can have. Furthermore by considering the irreducible
representations to which the translational, rotational, and vibrational modes belong, along with
the corresponding Hamiltonians, we can sufficiently study the effects of mild perturbations on
these degenerate doublets. For example under a given parameter variation, the symmetry
operations generate a new group which is necessarily a subgroup of the original group D,. By
comparing the properties of this new sub-group with those of the original group, we are able to
determine if such a perturbation would lead to a splitting of any of the degenerate pairs of
eigenvalues. It may then be possible to determine the minimum number of parameters which
must be varied simultaneously in order for a certain number of degenerate eigenvalue pairs to be
split at the same time. By noQ concentrating on those perturbations that lead to splitting of

degenerate pairs we can more fully study the effects of these perturbations on the forced
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amplitude response of the assembly. These results are summarized in the paper in Appendix 1.

3. SINGULARITY THEORY AND CYCLIC SYMMETRY

It is known from singularity theory that the splitting of eigenvalues of a matrix can lead to
rapid changes in the eigenvectors, which in turn can result in significant changes in the forced
amplitude of response of the assembly to external aerodynamic loading. Since the group theory
results indicate that bladed-disk assemblies could only have degenerate pairs of eigenvalues, the
simplest essential properties of any finite order bladed-disk assembly are captured by the
properties of an assembly of order 3. Note that we need a 3rd order assembly in order to inscribe
a circle and hence obtain a cyciic system. A third order tuned assembly would thus have a
degenerate pair of eigenvalues and an isolated eigenvalue. We may therefo;e study the influence
of perturbations in the masses, ground springs and coupling springs on the dynamics of this
system. From Arnold’s results in singularity theory [16], it is self evident that under mild
parameter variations interest should be concentrated not on the isolated eigenvalue but only on
the subsequent behavior of the degenerate doublet. To understand its behavior it is necessary to
study the behavior of any arbitrary doublet and the subsequent eigenloci as a function of
parameters in a manner reminiscent of root loci behavior in classical control theory. The
simplest doublet which contains the essential ingredients of the problem turns out to be the
symmetric, coupled double pendulum shown in figure 1 in Appendix 2. The essense of this

study was to discover the relation of the eigenloci to parameter variations and the corresponding

eigenvectors. We had conjectured that:

(1) Uneven amplitudes of vibration in symmetric structural systems are caused by the

sensitive dependence of system eigenvectors or parameters.
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(ii) Sensitive dependence of eigenvectors on parameters gives rise under appropriate

conditions to the mode localization phenomenon.

(iii) Rapid convergence-divergence (veering) of eigenvalues is a signature for the sensitive
dependence of eigenvectors on parameters and hence of the possible existence of mode

localization under appropriate conditions.

If the conjecture were to be true, we hoped to pe able to obtain an estimate for the
eigenvector sensitivity measure in an appropriate manner as well as an estimate for the
eigenvector rotations resulting from any mild perturbation. If extreme imperfection sensitivity
were present, it was expected that both measures would show a singularity which is an indication
of imperfection sensitivity. Furthermore these were expected to occur at the parameter values of
maximum curvature of the eigenloci. If the double pendulum were decoupled (no coupling
spring) there then would exist two independent but equal vibration frequencies. By including
very weak coupling between the masses we could study system behavior in the neighborhood of
the erstwhile equal eigenvalues. The study of weakly coupled systems is very important since in
practice the aim has always been towards use of rigid disks, in effect making the inter-blade
coupling very weak indeed. By assuming that the imperfection parameter is a slight difference
in the length of the two pendula, we could ther. —udy the behavior of the eigenvalues and

eigenvectors of this simple symmetric system under slight changes in coupling and disorder.

4. QUANTITATIVE UNFOLDING OF THE MODAL SINGULARITIES BY SINGULAR

PERTURBATION ANALYSIS

We may therefore write down the characteristic polynomial as a function of both the

coupling parameter and the imperfection parameter. The characteristic polynomial in turn
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behaves identically to a potential function in singularity theory {17]. Thus the degenerate

critical points of this function correspond to the repeated eigenvalues if any. By writing down

the expressions for the eigenvalues as functions of the two parameters, the detailed behavior of
the eigenloci in any neighborhood can be obtained. A regular expansion of these eigenvalues as
a functon of the two parameters breaks down (loses uniformity) in the neighborhood of the

critical point (where the eigenvalues are coincident). By applying the techniques of singular
perturbation analysis and appropriate stretching transformations it became possible to obtain the

eigenloci expressions which were uniformly valid over the d..-iiin of definition of the small
parameters and whose loci clearly indicated the veering phenomenon. The same technique was
also applied to the eigenvector expressions as functions of the parameters. From these
expansions, expressions were obtained both for the modal sensitivity measure and the
eigenvector rotation measure under slight parameter variations. All the results obtained,
confirmed the conjecture. The first part of these results are to appear in the Journal of Sound and
Vibration while the second part involving the full eigenvector work has been submitted to the
Journal of Sound and Vibration. These manuscript preprints are enclosed in Appendix 2. We
can now claim that we understand fairly well the causes of localization phenomenon for simple
doublets. We note however that the double pendulum analysis displayed the noted strange
behavior only under very weak coupling conditions. Our work had shown earlier (see Appendix
4) that for bladed-disk assemblies uneven amplitudes of vibration and hence mode localization
could occur even under very strong coupling conditions. We therefore had to discover under
what conditions the double pendulum analysis remained valid also for the bladed-disk assembly.
It turns out that the pendulum analysis remains valid for the bladed-disk, irrespective of the

coupling strength. However by systematcally reducing the coupling, more complicated
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singularities appear. This is because at very low coupling the bladed-disk behaves like a
perturbation of a triple degeneracy which in general requires at least three parameters to unfold
(completely analyse). On the other hand for the double pendulum, two parameters were enough

to unfold the doublet degeneracy.

The lessons learned so far are thus that for the bladed-disks even under strong coupling
conditions mode localization can occur. On the other hand for the double pendulum or linear
chains in general, mode localization occurs only under weak coupling. This finding contradicts
the current view in bladed-disk research [11], which holds that in both linear chains (coupled
pendula) and cyclic chains (bladed-disk assemblies) mode localization only occurs under very
weak coupling. What is howe\-'er true for bladed-disk assemblies, is that under very weak
coupling new singularity types (which do not exist under strong coupling) appear. We do not yet
understand the full effects of these new singularity types. We however conjecture that they will
further complicate the modal behavior of the assembly under aerodynamic loading. The key
question we seek to answer presently is which of either symmetry breaking perturbations or
coupling induced perturbations have more influence on the modal behavior of a bladed-disk
assembly. Are there regimes where each has more influence than the other and if so, what is the
transition region? If we could answer these questions then we could specify apriori the
acceptable range of coupling so that design effort could be concentrated on symmetry breaking
bifurcations and how to prevent their effects from being felt at the blade amplitudes. The
singular perturbation analysis acts as an unfolding of the singularities involved, since by this
methodology we are able to obtain detailed information on the modal behavior of the structure in

the neighborhood of the singularities.
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5. THE CONTROL PROBLEM

We have not carried out the control design component of the project as stated in the
statement of work because it has only been in the last six to eight months that a thorough
understanding of the structural dynamics has emerged. We however are clear on the work that
needs to be done. The next stage of our work will involve classification of different
perturbatdons with the corresponding amplitudes of vibration. The control problem in one
possible approach is a structural‘redesign that deliberately breaks the symmetry by splitting the
degenerate eigenvalues with only those perturbations that do not lead to amplification of
vibration amplitudes. Provided the split eigenvalues are not in the neighborhood of the
bifurcation set, all further slight perturbations would not be expected to display extreme
imperfection sensitivity. Another alternative control methodology which we are presently
considering is a regular adapative control scheme that seeks by means of active addition or
subtraction of control masses and springs to restore symmetry whenever the symmetry breaking
signature is observed. Under this scheme the degree of sensitivity and eigenvector rotation will
determine the amount of modification called for and the location where to apply it. However
this kind of scheme seems to us to be more appropriate for aerospace structural systems than to

turbine rotor disks.

6. CONCLUSIONS

The results obtained from the study in the last two years have helped to clarify and unify
several conflicting viewpoints within the bladed-disk research community. What is more
significant is that it has led to a better understanding of the potentially very complicated

dynamical structure which ensues when geometric (spatial) symmetry interacts with weak
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coupling in periodic structures. Without this understanding any attempts at either structural
redesign or structural control of such systems would inevitably be frought with danger. We are
currently continuing work on the forced response of cyclic systems with a view to a more
complete matheraatical characterization of the relationship between amplitudes of vibration,
mode localization, and perturbation type. We are also generalizing the singular perturbation
approach to linear chains and cyclic symmetric systems of any finite order. We believe that the
development of the structural control schemes would be worthless without this full

understanding.
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STATEMENT OF WORK

The principal aim of the proposed research is to carry out an in-depth mathematical and

numerical investigation of the dynamics of mistuned cyclic systems, by use of some new and

extremely powerful topological theory of dynamics, and to develop simple control schemes for
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preventing unacceptable vibration characteristics in such systems. To accomplish this task, we

will:

®

(ii)

(iil)

(iv)

v)

Identify the topological structure of nominally tuned bladed-disk assemblies, the order of
the degeneracy in the natural frequencies, the minimum number of canonical parameters
needed to unfold the degeneracy, and the classification of the bifurcation set in the

parameter space.

Use the Jordan-Amold canonical structure theory to completely characterize all the blade

motion forms expected when a given nominally tuned system is generically mistuned.

Relate the canonical unfolding parameters to the disk assembly elements of mass,
generalized damping and generalized stiffness; and hence determine which mistuning
parameters or combinations thereof, govern the escalation of forced response amplitudes

and/or unacceptable blade motions.

Employ the control methodologies of either entire eigenstructure assignment or quadratic
optimization to deliberately mistune the blade assembly passively so that eigenvalue
degeneracy under slight parameter variations are avoided and at the same time the
parameter combinations which lead the assembly to unacceptable blade motions (the

bifurcation set) are never allowed to occur.

Carry out a thorough numerical simulation on typical nominal and perturbed bladed-disk

assemblies to verify and validate the predictions of the new topological theory.

The above will set the stage for a controlled laboratory hardware experimental verification,

which we hope to undertake in a follow-up project.
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ABSTRACT

In this work, we consider the dynamics of linear mechanical systems possessing geometri-
cal symmetry subject to differential or small parameter variations. The machinery of group
theory including the irreducible group representations, and the consideration of representations
to which the translational, rotational and vibrational modes belong, allow us to predict apriori,
the number and the order of degenerate eigenvalues in the symmetric system. By considering
the resultant Hamiltonians of the perturbed symmetric system, we show further the effects of the
perturbations on the eigenvalues and their degeneracies. Since the vibration modes of systems
with degenerate eigenvalues are known to display sensitive dependence on parameters, we may
use these techniques to identify in principle the possibility of maximum vibration amplitudes and
where they are likely to occur. Applications of these ideas include the mistuned turbine rotor

bladed disk assemblies.




LIST OF SPECIAL SYMBOLS

C"™(R) Reduced cartesian representation of a group element R.
r'™®) Reduced translational representation of a group element R.
[~ Reduced Rotational representation.

'~ Reduced Vibrational representation.

[(R), F{(R) Matrix representations.
r''R) ith representation.

T ,ﬂv (R) Matrix element of the u row and the v column of the matrix representing the

group element R in the i representation.

r‘;fv(R) Complex conjugate of I‘fw (R).

Y'(R) Character of a group element R in the i®* matrix representation.
a Number of times I"i(R) appears in the reducible representation.
€ Row vector.

M Mass matrix.

K Stiffness matrix.




1. INTRODUCTION

Eigenvalues and eigenvectors of a vibrating system are important for characterizing its
dynamical response. The eigenvalues are related to natural frequencies whereas the eigenvectors
correspond to special forms of displacements when vibrating at a nawral frequency. Exact
evaluation of the eigenvalues of higher order vibrating systems in general involves considerable
effort and is time consuming. Most cyclic symmetric systems possess degenerate eigenvalues
[1,2]. Systems with degenerate eigenvalues are expected to display severe sensitive dependence

on parameters [3] that destroy the symmetry or degeneracy.

In the eigenvalue problem if there is any symmetry of the system, the application of group
theory enables us to decide, at the outset, exactly the number of distinct eigenvalues together

with their respective degrees and degeneracies.

By considering the symmetry operations of the physical system at the equilibrium points,
the representing group can be formulated. Using group theoretical ideas, we can predict apriori
the degeneracy of the eigenvalues. This is accomplished by the use of the irreducible represen-
tations of this group which is obtained by using the orthogonality theorem and the reduction for-
mula [3]. Once the irreducible representations are known, we can find the translational, rota-
tional and vibrational modes of the system. These results are well known in the physics litera-
ture on group theory but have not been used sufficiently effectively in the vibration community.
The essential purpose of this work is to summarize some of these results and show some applica-

tions as they relate to the symmetric bladed disk assemblies.

In general, a reduced cartesian representation of a group element R, I' ™ (R), can be writ-

ten as
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r“®) =r“Rer=~Rer™ ).

where '™ (R), [ ™(R), and " " (R) are translational, rotational and vibrational reduced carte-
sian representations of a group element R. In three dimensional vibrating systems, six of the
normal modes belong to the zero frequency modes and correspond to pure translations and pure
rotations. Since we are primarily interested in vibrational modes (non zero frequency) the zero

frequency modes are not discussed further in this work.

Some of the symmetry of the physical system may be lost once the system is subjected to
parameter perturbations. The perturbed system may, however, still possess some symmetry
which may be considered to be a subgroup of the group characterizing the unperturbed or origi-
nal system. Applying group theoretic ideas now to this subgroup we can predict the splitting of
the degeneracy of eigenvalues. As a result we can see whether the degeheracy of some of the

eigenvalues has or has not been removed.

Ideas similar to the ones proposed in this work were used by R. Perrin (4] in 1971 for a
thin circular ring. In his paper group theoretical arguments were applied to a ring where pertur-
bation was applied in the form of equal masses attached to the ring at the vertices of an inscribed
regular n® order polygon. Further, eigenfrequencies and eigenfunctions for the unperturbed ring
were assumed to be known apriori. Knowledge of these degenerate pairs of eigenfunctions was
used to find the characters of each irreducible representation of the corresponding D, group for
the perturbed system. In the present work, group theoretical techniques are developed without
apriori assuming any knowledge of either the eigenfrequencies or the eigenfunctions for the cir-
culant symmetric system. Also, parametrically perturbed cases were not discussed by Perrin.
Parametric perturbations are important in turbine blade vibration problems where a slight pertur-

bation can lead to loss of cyclic symmetry, which in turn can induce rogue blade failure under




certain circumstances [5,6].

2. THE GROUP THEORETICAL CONCEPTS

We first define some standard terms from the literature on group theory. One of the stan-
dard references is the text by Hamermesh [1]. Following definitions and theorems are obtained

from [2].

2.1 Definition 1. Symmetry operations: All the operations which leave a system

configuration unchanged are called symmetry operations.

In physical terms, this refers to the movement of a system in such a
way that it interchanges the positions of various particles of the system but
results in the system looking exactly the same as before the symmetry

operation. For instance some of the symmetry operations are defined as

follows:

E: Identity. The system is not rotated at all or rotated by 2n about any

axis.

C, Rotatdon: This is an operation which effects rotation through an
angle 2nt/n about an axis, fixed in space, where n is an integer. In
addition we can have CK, which is C,, raised to the power k, that is,
a rotation through an angle 2nk/n about the same axis. Cj, is a rota-
tion through an angle 2x and is the identity operation, since a rota-

tion through 2x leaves the object unchanged. n is known as the




Definition 2.

Definition 3.

muldplicity of the axis, and the latter is called on n fold axis. If
n=23,... then, respectively, we get 2-fold, 3-fold... axes. If a sys-
tem has more than one axis of symmetry then the axis with the

highest value of n is called the principal axis.

Group: A set of elements {a,b,c..} is called a group G, if a multiplication
rule is defined for any two elements so that the product ab has a definite

meaning and the following four postulates are satisfied:
1. Closure: If a and b belong to the set, then ab also belongs to the set.
2. Associativity: a(bc) = (ab) c.

3.  There exists the identity element e such that aec = ea = a for any a

belonging to G.

4. There exists the inverse element, i.e., for each element a, there is a
corresponding element b such that ab = ba = e. b is called the

inverse element of a and is denoted by b = a’l.

D, group: This group concerns a system possessing one n-fold axis called
the principal axis and n 2-fold axes symmetrically placed in a plane per-
pendicular to the principal axis. The n-fold axis provides the n elements
of the cyclic group C,. The group also contains one C, element provided
by every perpendicular 2-fold axis where we do not count C$ = E because
E only occurs once in a set of group elements and it has already appeared
in the n elements of C,,. The group D, therefore contains a total of 2n ele-

ments.




Definition 4.

Definition 5.
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Equivalent and reducible representations: Two representations are said
to be equivalent if the two matrices representing any element R of the

group are related by the equation
I'e)=T'TR)T, M)

where T is any nonsingular square matrix (operator). However, if there
does not exist any matrix T which transforms ' (R) into I' (R), then

I'’ (R) and T (R) are said to be inequivalent.

A reduced representation of a group element R, '™ (R), is com-

posed of two or more irreducible representations:

C'R) O
re )= . ) 2
(R) 0 [ (R)} )
We write this by using the symbol @ and
r| R)=r'R)®ri R). (3)

x'(r), Character of a group: The character of a group element R in the i
matrix representation of the group element is the trace (sum of diagonal

terms) of the matrix.

2.2.1 Orthogonality Theorem: All the vectors formed by the inequivalent irreducible unitary

representations are orthogonal to each other, or:

Eriu‘v (R) r{;’v’ (R)= l—gl- Sijﬁwfsw,

where i and j denote the representation, 4 and p’ denote rows of the matrix elements and v and
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v’ denote the columns of the matrix elements, g is the order of the group and |; is the dimen-
sionality of the it representation. I‘}w (R) is the matrix element of the u® row and v column
of the matrix representing the group clement R in the i representation, and * denote its complex

conjugate equivalent to I'! (R)

2.2.2 Character table: The character table is formed by considering the characters of group
elements. The character of a group element is important because the character is unaltered by a
similarity transformation. On the other hand since the character of equivalent irreducible
representations are identical a table of characters is a unique way to characterize a group. The

general form of a character table is:

Nic(l) Nzc(2:-Nc@®

MR [ ey xe@y ¢ Eca)
I"Z(R) x2 (C(l)) +rrvvennnns x2 (c )

rf(R) xr (C (1)) ........... xf (C (r))

where
c(r): the nature of elements in the class,
Ni: number of elements in the class, and

r'': i irreducible representation.

The character tables of the groups can be obtained by the application of the following rules:

(1) Number of inequivalent representations is equal to the number of classes.
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() )n_", 1? = g, n- number of irreducible representations.

=l

3) X x" ®R) ¥ (R)=g8§;, where x'(R) denote the character of a group element R in the i
R

matrix representations.

@ 32" (Cox o= o

i=1
In labeling the rows of the character table, the following standard notation is used.

(1) One-dimensional representations are labeled as A if the character of the elements Ck about

the principal rotation axis are +1 for all k, and as B if the characters CX are (—1)¥ for all k.

(2) If a group has more than one A or B representation they are given subscripts 1 and 2
according to whether the character is +1 or -1 in the column reprcs;nting a rotation or
improper rotation about an axis other than the Principal axis. For example, in the groups
D, a representation is given a subscript 1 if the character under C, about the axis is +1 and
2ifitis -1.

(3) Two dimensional representations are labeled E.

(4) Three dimensional representations are usually labeled T.

Finally, the reducible representations are used to obtain the urreducible representations by the

applications of the formula

aj=

SN ®RY®). @
R
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3. VIBRATIONS OF CYCLIC MECHANICAL SYSTEMS

Many vibrating systems possess sufficient symmetry to allow us to use group theory which
reduces the amount of work involved in the calculations and also furnishes us with an insight
into the nature of the vibrations. Consider n nominally identical masses connected via ground
springs k, and coupling springs k. at the edges of an inscribed n® order regular polygon in a cir-
cle of radius r. Rotational symmetry about one n-fold axis perpendicular to the plane of motion

and n, 2-fold axes give 2n number of elements for the corresponding symmetry group. In fact,

n~-1

this is the dihedral group D,. D, has 2 + 3

) conjugate classes when n is odd and (3 + %)

classes when n is even. Utilizing group character table construction rules [1,2], it can be shown

that the number of possible degenerate eigen levels are:
neven

single degenerate levels = 4

D double degenerate levels =% -1’ &)
nodd

single degenerate levels = 2
ii) ©)

double degenerate levels = -'%'-l-

Results (i) and (ii) imply that a cyclic symmetric system of this type, at worst, can have double

degenerate vibrational modes for any finite n.

Once the system is subjected to a random parameter perturbation, some of the symmetry

may be lost and consequently, we get a new group which is likely to be a subgroup of the origi-
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nal group. Equations (5) and (6) can be used to get a qualitative information about the new
degenerate eigenvalues of the perturbed system. Since any higher order cyclic symmetric sys-
tem of this type will have at most doubly degenerate eigenvalues it is sufficient to consider an

example with n = 3.

Consider three normally identical masses connected via both, ground springs k, and cou-
pling springs k¢, at the edges of an inscribed isosceles triangle, in a circle of radius r. We wish
to study the number and degeneracy of the eigenvalues of such systems under random differen-

tial perturbations in the elements {k;, k., m}.

As defined in Section 2, a symmetry operation is one which leaves the undistorted system
indistinguishable from its previous orientation. Such an operation interchanges equivalent
masses. However, in the vibrational state, the system is in a distorted configuration and, when
the symmetry operation is performed on the distorted mass the effect is the same as that obtained
by interchanging displacement vectors amongst equivalent masses. Therefore we can define the
action of a symmetry operation for each mass in a distorted system to be a displacement through
vector X; from its equilibrium. When a symmetry operation is applied we can assume that the
mass positions remain invariant. Furthermore the symmetry operation can have no effect on the
potential or kinetic energy of the system, or even the angles between the connections. Conse-
quently the quadratic forms of the kinetic energy T and the potential energy V remain invariant
under the action of the group transformations. Group theory can thus be used to determine and

classify the normal modes of the vibrating system.

We begin with the 3N dimensional representation of the group of symmetry operations of
the undistorted system. By reducing this representation using the character table for the

corresponding group, (and reduction of reducible representatons) we can determine the
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irreducible representations to which the 3N translational, rotational and vibrational modes
belong. Also we can immediately find the degeneracy of each normal mode. In addition, by
considering the symmetrized basis S, we can bring the mass matrix M and the stiffness matrix K
into block form and thus greatly simplifying the solution of the characteristic or the frequency

equation.

We apply these group theoretic techniques to the problem shown in Figure 1 (4]. This sys-
tem belongs to the group D3 which contains the symmetry operations E, C}, C%, C3, C3, and
C5. Now by applying thesz operations to the nine cartesian coordinates x;, x2, X3, ¥, Y2, ¥3, 21,
Z3, z3 we obtain their nine dimensional reducible representations. This can be accomplished by

finding the corresponding matrix representation, and using the equation
X' =T*(R)X, @

where R is the appropriate symmetry operation, and X and X’ denote the nine dimensional vec-
tors representing the cartesian coordinates in original and transformed planes respectively. For
example, under the operation of C} the system configuration in Figure 1 is transformed to the
configuration in Figure 2. This also clearly indicates the manner in which the coordinates
undergo rotation. In Figure 2, the axes z;, z; and z; are pointing out of the plane of the paper.

The new and the old coordinates are related by the relations

(x1, ¥1.21) = X'y, Y1, Z'y) m (- x; sin 30 - y, cos 30, x; cos 30 -y, sin 30, z;), (8)
(X2, ¥2.22) > (X'z, )/2’ Z'z) = (-x3sin30- Y3 COS 30, x3 cos 30 - y2 sin 30, Z3), (9)
(x3, y3, 23) = (x5, Y3, 2"3) = (= X3 sin 30 — y; cos 30, x5 cos 30 - y; sin 30, z;). (10)

In matrix form, equations (8) - (10) are represented as
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X'l . 12 0 0 0 ’XJ
% 0o - -3 0 0 0 )
: o 0 -2 0 0 V32 0 0 of [
x3 a2 9 0 _Ep 0 00 o] |
Y1 o 3ip O 0 -12 0 00 0| [n
pat=| o0 0 iz o 0 =12 0 0 0] dyat (1)
v sn 0 0 -2 0 0 0 0 0 |y,
. 0 0 0 0 0 010
Z 0 Z
’ 0 0 0 0 0 0 00 1|,
z) 0 0 0 0 0 0 100
. ' m
Lz3 J

where the coefficient matrix is the matrix representation of the group element C}. The character

(trace) of the matrix is then
x° (C1H=0. (12)

Since C$ and C} belong to the same class, x° (C$)=0. It is clear that x° (E) =9. In a similar

manner
r(CH=-1,
rCH=-1, (13)
X (CH=-1.

Now using the character table for D3 (Table 1) and equadon (4), we can determine the

irreducible components of I" ¢ (R) as:
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Here, A,;, A, represent one dimensional representations, E represents two dimensional
representations, and Ty, Ty, T; and Ry, Ry, R, represent unit translational and rotational vectors

respectively. Consequently
a,, =%(9xl+2(0x1)+3(lx-1))=l,
2, =%(9x1+2(0x 1)+3 (=1 x-1))=2,

an, =g OX2+20x-D+3(1x0)=3.

Hence '™ (R)= A; @ 2A; @ 3E. Since the system has three masses, N=3 and there are 9
degrees-of-freedom for the system. Since 3N — 6 =3, we have only three vibrational modes, the

other six corresponding to zero frequency modes and to pure rotations and pure translations.

-

This can be seen from the character table,

r'R)=A,@E,

M R)=A, ®E.
Since we are primarily interested in the vibrational modes of the system and
I R)=A, @2A, 0 3E,
RO R)=2A; D 2E,
wegetI'™ (R)=A,; @E.

Since A, is one dimensional, the vibrating system has one non degenerate eigenvalue and
since E is 2 dimensional there is a one degenerate eigenvalue. These results are consistent with

the exact eigenvalues given in appendix A.

Using group theory arguments to predict the number of degenerate eigenvalues becomes
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very useful as the order of the system increases since the exact calculation of eigenvalues for

such high order systems becomes increasingly burdensome.

4. THE PERTURBED SYSTEM

Suppose that the Hamiltonian of the unperturbed system is Hy. Then Hp is invariant under
its symmetry group G. Suppose further that the system is subjected to a perturbation with Ham-
iltonian V. The perturbed Hamiltonian H = Hy + V, will then have a symmetry group which is

necessarily a subgroup of G. Two possible cases arise.

CASEI

If the perturbation V has symmetry at least as great as Hy, the group G will still be the
symmetry group of the total Hamiltonian H. In this case the possible types of eigenvalues will

be unchanged by the perturbation. In fact no splitting of degenerate levels occurs.

CASE I

If the perturbation V has symmetry lower than Hy, the total Hamiltonian H will have a
symmetry group G! which is a subgroup of G. This subgroup G! is invariant under the perturba-
tion. Because of the perturbation, some of the degenerate eigenvalues may split. This can be

explained by using group representation theory.

For a given representation D(G) of the group (G, we now obtain the invariant subgroup G'.
Even if D(G) is an irreducible representation of G, the representations of G! which we derive in
this way may be reducible. In other words, even though we cannot find a subset of the basis vec-

tors of D(G) which is invariant under all transformations of the group G, we may be able to find
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a subspace which is invariant under all transformations belonging to the eigenvalue A from a
basis of an irreducible representation of G. This representation may be reducible for the sub-

group G!. The perturbation V will then split the level.

We now apply the above ideas and show the appropriate methodology in the context of the

three mass system.

4.1 Ground Spring Perturbed System

First we consider the situation when one of the ground springs is perturbed. The unper-
turbed system can be represented by the group D; = {E, C3, C%, C,, Cy, Cc}). Once the system
is subjected to a ground spring perturbation, for this particular system G! = (E, C,) is the invari-

ant subgroup.

The character table for G! = (E, C,}, is as follows:

E C,
A" |1 1
A” |1 -1,

Considering the part of the character table of Dy which refers to the operations of the sub-

group G! = (E, C,}, we have

Utilizing (4), the irreducible components are then given by
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aAr=%(lx2xl+lx0xl)=l,
aAn=%(1x2x1+1xo-1)=1.

Thus, the doubly degenerate E level of the unperturbed system splits into single levels A" and A”
of G! under the ground spring perturbation. As a result, degenerate eigenvalue of the perturbed
system separates. Hence, for this particular system we get three distinct eigenvalues. Coupling
spring perturbation leads to a case where there is no invariant subgroup left and consequently,
group theoretical arguments do not work for this particular situadon. We conjecture that this is
indicative of those cases where perturbations do not lead to radical changes in the eigenvector

directions.

4.2 The Mass Perturbed System

A system consisting of three particles, two with mass m and the other with mass M, is
illustrated in Figure 3. Considering rotational symmetry of the system, we can see from Figure 3

that this system belongs to the group D,

D, ={E, C;}.

The character of each of the elements of the group can be obtained from the reducible represen-

tation whose matrix representation is obtained by the use of the coordinate transformation
X! =T° (R) X.

Performing these operations, and following the steps along the lines of work in section 3, we can

show that the reducible characters of each element are

Xc (C2)=-1v
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x° (E)=9.

Using the character table of D, and (4), the irreducible components of the reducible representa-

tions can be then determined as

Therefore,

'~ (R)=4A@5B. (14)
In general, ™ (R)=I'™ R)@ ™ R)® '™ R).
By placing a coordinate system XYZ at the center of mass, translations and rotations can be
represented as shown in Figure 4. The representations for C; and E are given by

r(C)=-1 , xE=3,
r(C=—1 , xE=3.

By the application of the a; equations (4), we get

) Translation
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ak:-;-[lx3-1xl]=1,

ah=—;—[1x3—1x—l]=2.

(ii) Rotation

Mx3-1x1]=1,

1
r _— ——
aa 3

aﬁ:—é-[le—lx—l]:Z.

Therefore,

'™ R)=A®2B, (15)

'™ (R)=A®2B. (16)
Hence from equations (14)-(16), we get the result that
' R)=2A®B. ¥

This shows that there are three vibrational modes and each eigen level is non-degenerate since A

and B are one dimensional representations.

5. SUMMARY AND CONCLUSIONS

This work uses results from group theory and applies it to perturbed cyclic symmetric

vibratory systems. It is shown that:

a. The number and order of degenerate eigenvalues in a symmetric system can be predicted

apriori by using group theory without explicitly determining the eigenvalues.

b. Cyclic symmetric vibrating systems possess degenerate eigenvalues for n > 2. For strong
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coupling, these eigenvalues occur in doubly degenerate pairs and in single nondegenerate

levels.

c. Random parameter perturbations may partially or totally destroy the symmetry of the sys-
tem. Accordingly these perturbations lift some of the degeneracy of eigenvalues. As a
result, eigenvalue loci veering [7] occurs when the parameters are continuously varied. This

may also lead to a mode localization or rapid variation in the eigenfunctions [7].
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Appendix A
Equations of motion for the system in Figure 2 can be written in the form:

Mx+Kx=0 , where

mO 0 a -k -k
M= OmO ’ K=_k€ a —kc ’
0 0m k. k. a
and
2kc+kt
a= —.
2

The eigenvalues are determined by
det [K-aw? M| =0.

Therefore,

This shows that the cyclic symmetric system has a double degenerate eigenvalue and a sin-

gle nondegenerate eigenvalue.
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Figure 1. Model representing the unperturbed three bladed disk assembly in its identity
orientation.

Figure 2. Model of figure 1 counter/clockwise rotated by 21/3 radians about the center of the
system, showing change in cartesian coordinate axes.

Figure 3.  Mass perturbed system in its identity orientation.

Figure 4. The representation of the three translations and the three rotations in an XYZ
coordinate system.
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Figure 1. Model representing the unperturbed three bladed disk assembly in its identity
orientation.




Figure 2.  Model of figure 1 counter/clockwise rotated by 2n/3 radians about the center of the
system, showing change in cartesian coordinate axes.




Figure 3.  Mass perturbed system in its identity orientation.




Figure 4. The representation of the three wanslatons and the three rotations in an XYZ
coordinate system.
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In recent years there has been tremendous interest in the vibrations and structural dynamics
community in the phenomenon of mode localization. This interest stems from the recognition
that large systems composed of nominally identical subsystems inevitably involve minor devia-
tions from the idealized structures and these disorders or perturbations can, under appropriate
conditions, cause disproportionately lurge deviations from the predicted behavior in the nominal
or idealized system modes. [mportant technical applications of these include mistuned bladed

disk assemblies (1] and large space structures {2].

[t is well understood by now that the presence of small irregularities in nearly periodic struc-
tures may inhibit the propagation of vibration and localize the vibraton modes. Depending on
the magnitude of perturbations (disorder) and on the strength of internal coupling between the
subsystems, the mode shapes may undergo dramatic changes to become strongly localized when
small perturbations are introduced, thereby confining the energy associated with a given mode to
a small geometric region. This phenomenon is referred to as mode localization. Pierre [3]
showed that strong mode localization and eigenvalue curve veering, are two manifestations of
the same phenomenon. Therefore, the investigation of the curves of the eigenvalues or natural
frequencies in the neighborhood of the ordered state is sufficient for determining the occurrence
of srong mode localization. That eigenloci veering phenomenon can occur in disordered struc-
tures under certain conditions has been explained qualitatively using geometric arguments in 4],
where it was also hinted that quantitative results should be obtainable by the use of singular per-

turbation analysis.

For mistuned linear chains, Pierre {3] und, Pierre and Dowell (5] showed that the straight for-
ward expansion in terms of mistuning parameters breakdown in the case of weak coupling. This

arises because the idealized system that 1s being perturbed has natural frequencies with




multiplicity > 1. They then developed a so-called "modified” perturbation technique which pro-
vided a good approximation to the exact eigenfrequencies and showed good agreement with

experimental results.

[n the present note we show that the singulanty causing the breakdown of the straight for-
ward expansion can be analyzed by the well developed singular perturbation techniques (6] and
an appropriate asymptotic expansion tor the eigenfrequencies can he constucted which provides
a correct qualitative and good quanutative approximation. [n order to explain the ideas and to
keep the algebraic manipulations to 4 minimum, the attention is focused on the now standard

example [3] of the coupled penduli shown in Figure [.

The basic idea of the technique is the following: by applying the regular perturbation tech-
nique to the characteristic equation F(A, €, 8) = 0, of the system, we can obtain algebraic expres-
sions for the natural frequencies (eigenvalues) as a power series in the small parameter or pertur-
bation (say 6). The coefficients of the power series are dependent on the second parameter € and
these expansions are valid for all values of € so long as no singularities arise. Singularities occur
for values of € where the eigenfrequencies lose their smoothness and it is said that the expansion
is not uniformly valid for all . Away from the singular parameter (€) values, the straightforward
expansions are good approximations and are called the "outer expansions”. The neighborhood
of the singular parameter point is then stretched or rescaled in terms of a new parameter so0 as to
remove the singularity. The expansions in terms of the new parameter is valid only in the neigh-
borhood of the singular point and is called the "inner expansion”. The inner and the outer solu-
tions can be matched where their domuins of validity overlap and then a composite expansion
can be constructed which is valid unitormly throughout the function domain for all values of the

parameter €.




Consider the system of two weakly coupled penduli system as shown in Figure 1. The two
important parameters are the dimensionless coupling between pendulums R? = (k/m)/(g/l), and
the dimensionless length change Al. The corresponding eigenvalue problem generated by the

above system is given by:

|+R? -R? 1 3

2 3 ~1 O =rd (L.
-RT REe(1Al |

b hl ~ , )
where R? =i/wg . wg=km . w;=gl.
This eigenvalue problem results in the tollowing characteristic equation:

Fhe.8) =A% — (14266 —— + 18 5.0 (1.2)
1+€ l+€

where Al =€ and R? = 3.

We can express the solutions to (1.2) as regular functions of the parameters A/, 8 as follows:

M@AD=1+8+ {1+%] 82 + 0% =Af A, (1.3)
__ 1 - RIrY) Iyt
A (Al = T Al +0 [1+Al 3 +0() =5 (AD). (1.9)

The expressions (1.3), (1.4) are the regular expansions of the eigenvalue problem for small cou-
pling. When Al - 0, A; and A, become unbounded and the continuity of the eigenvalues with
respect to the perturbation Al breaks down, as shown in Figure 2. Each eigencurve has two
branches, one valid for A/ >0 and the other for Al <0. These branches are indicated by the
superscripts '+’ and ’-' which correspond to Al > 0 and Al <0, respectively. Note that, since A/

and R? = 3 have been teated as two independent parameters, we have no control over expres-




sions (1.3) and (1.4) in the limiting process when A/ -0 and 8 = 0. Bv forming the “inner
expansion” however, we can find an exact relation between these two parameters by taking into
consideraton the nature of the singularity. Then A/ and O become dependent parameters.
Asvmptotically matching the inner and the outer expansions, then gives the composite expun-

sions which are valid throughout the resion of interest.

For the inner expansion. we ussume that the physical parameters R= =06 and A =€ are

3 .. and d by a "strerching

gn

. ‘\c

YRR

related (dependent) by a set ot mathematcal parameters:

transformation of the form:

E=g, +Sut+ ¥ S uty . (1.5)

=2
where U is a new small parameter that is defined by:
S(p) = (sgnd)u® . (1.6)
The positive constants a and b are to be determined by the nature of the singularities of F(A.
€. 0) near € =€y, where €g is the singular point of interest. Let the dependent variable

Z()) = A(E(K),8(1)) be written as the expansion

>0

z=3 W . (1.7)

=0
Note that for the pendulum problem F(A, €. 0) = 0 has a singular point at € =€, =0. The
expansions (1.7) are called the "inner expansions” and the z}s are called the "inner coethcients”.

Substituting (1.5), (1.6) and (1.7) into «1.2). and by simplifving the inner expansions with a=b=2

one obtains the following solutions:




=1+ f2—§+\lgz+4 ]uz+§i

r - w D ;2 é
=1+ |25 N5 +4 e+ 2 l+ —==1p* + o), (1.9
| 2 < VE- +
Al=g=2u°, (1.1
and
R2=8=pu". (1.1

Keeping u fixed and taking the limit | 3| — oo, it is easy to see that z; matches asymptoti-
cally with A7 for § — = and with A3 for § — — . Similarly the inner solution z, matches
asymptotically (|§]| — o) with A7 and A3. Ncw combining the inner and the outer expansions

appropriately, we get the composite expansions:

A = {1+R2 +(1 +$)R“] (1 - uw(A) + {u 2R? - AL - R2NV(AIRY)? + 4
2

AIZ 1+ Al
+ —
2 R2V(AI/R?) + 4

1 2 _ RIENY - 2414 Lge
+{1*AI+R (1+A1)R :|U(A1) (1 u(Al))[lﬁ-R +(1+AI)R

- u(Al) {I—AI+A12+R2—(1+-;—1)R"]+O(R6), (1.12)




1 2 LN 7R2—A1+R2'\J(AI/R2)2 +4
e l—— +R%* (1 + — - 2
12-[1 ] (1 I)R](l u(Ah) + Iiu_ 5

I
+il.2_ 1- = S
2 R2V(AI/RY)? + 4
1 ] [ UL
+ [1T+RE+(1+ —)RY [ wiAl) = [ 1=AA+RT (1 + — )R (1 = uAl))
Al i ‘L Al ;
—[1+R2+(1+é»R*1um1)+o(R"».

where

1. Al20
wAD=1 0 Al<0

The plots of eigenfrequencies A, A, versus Al are given in Figure 3 for both the exact solu-
tions and the solutions obtained above by the singular perturbation technique. These are in
excellent agreement. Thus, the singular perturbation technique leads to qualitatively correct
asymptotic approximations that are often close to true solutions and can be used as a mathemati-
cal tool to generate quantitatively accurate solutions for a wide variety of linear and nonlinear
structural dynamics problems. The methodology is general and systematic and when combined
with elementary singularity theory, should provide a powerful technique to study the mode local-

ization phenomenon in any finite order linear or cyclic dynamic chain.
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ABSTRACT

An investigation of the eigenvalue loci veering and mode localization phenomenon is
presented for mistuned structural systems. Examples from both, the weakly coupled uniaxial
component systems and the cyclic symmetric systems, are considered. The analysis is based on
the singular perturbation techniques. It is shown that uniform asymptotic expansions for the
eigenvalues and eigenvectors can be constructed in terms of the mistuning parameters and these
solutions are in excellent agreement with the exact solutions. The asymptotic expansions are
then used to clearly show how singular behavior in the eigenfunctions or modeshapes leads to

-—

mode localization.




1. INTRODUCTION

In recent years there has been remendous interest in the vibrations and structural dynamics
community in the phenomenon of mode localization. This interest stems from the recognition
that large systems composed of nominally identical subsystems inevitably involve minor devia-
tions from the idealized structures and these disorders or perturbations can, under appropriate
conditions, cause unexpectedly large deviations from the predicted behavior in the nominal or
idealized system modes. Important technical applications where these problems arise include

mistuned bladed disk assemblies {1,2] and large space structures [3,4].

It is well understood by now that the presence of small irregularities in nearly periodic struc-
tures may inhibit the propagation of vibration and localize the vibration modes. Depending on
the magnitude of perturbations (disorder) in the individual components and the strength of inter-
nal coupling between the subsystems, the mode shapes may undergo dramatic changes and
become strongly localized when small perturbations are introduced, thereby confining the energy
associated with a given mode to a small geometric region. This phenomenon is referred to as
mode localization. Pierre 5] suggested that strong mode localization and eigenvalue curve veer-
ing are two manifestations of the same phenomenon. Therefore, the investigation of the curves
of the eigenvalues or natural frequencies in the neighborhood of the ordered state is sufficient for
determining the occurrence of strong mode localization. That eigenloci veering phenomenon
can occur in disordered structures under certain conditions has been explained qualitatdvely
using geometric arguments in [6]; where it was also hinted that quantitative results might be

obtainable by the use of singular perturbation analysis.

For mistuned linear chains, Pierre [5], and Pierre and Dowell {7] showed that the straightfor-




ward expansion in terms of mistuning parameters breaksdown in the case of weak coupling.
This arises because the idealized system that is being perturbed has natural frequencies with
multiplicity > 1. They then developed a so-called "modified" perturbation technique which pro-
vided a good approximation to the exact eigenfrequencies and showed good agreement with
experimental results. In the case of strong coupling between identical subsystems, no such
difficulty arises and regular perturbation expansions in terms of mistuning parameters are uni-

formly valid.

For systems with cyclic symmetry or spatial periodicity, however, mode localization can
arise in the presence of perturbations which split the degenerate or coincident eigenvalues,™
irrespective of the strength of internal coupling [6]. Using differential topological ideas it was
shown qualitatively in [6] that circularly configured systems which have cyclic symmetry exhibit
complicated topological behavior even for strong coupling when small perturbations are
imposed. Furthermore, the frequency response of a perturbed cyclic system depends
significantly on the form of the perturbation. Such cyclic periodic systems are important to the

analysis of vibrations of bladed disk assemblies.

In the present work we show that the singularity causing the breakdown of the straightfor-
ward expansion can be analyzed by the well developed singular perturbation techniques [8) and
appropriate uniform asymptotic expansions for the eigenfrequencies and eigenvectors can be
constructed which provide a correct qualitative and good quantitative approximation. Prelim-
inary results on eigenvalue veering for the now standard example [5] of the coupled penduli
shown in Figure 1 were recently reported in a short paper (9]. Here we present complete details
of the singular perturbation analysis for the eigenvalue problem of the coupled penduli system.

Using the uniform asymptotic expansions for eigenvectors, the occurance of mode localization is




then related to sensitivity with respect to parameter variations. We then consider the simplest of
examples of systems with cyclic symmetry consisting of three identical masses arranged in a
ring, interconnected by identical springs and having individual torsional stiffnesses. The eigen-
value veering is here shown to exist even for the strong coupling case. Finally, based on the

solutions for the strong coupling case, behavior for the weak coupling limit is explored.

The basic idea of analysis by the singular perturbation technique is the following: by apply-
ing the regular perturbation technique to the eigenvalue problem A¢ = A¢, of the system, we can
obtain algebraic expressions for the eigenvalues and eigenfuctions as a power series in the small
parameter or perturbation (say 8). The coefficients of the power series are dependent on a~
second parameter € and these expansions are valid for sufficiently small §, for all values of €, so
long -as no singularities arise. Singularities occur for values of &€ where the ecigenfrequencies and
eigenfunctions lose their smoothness and it is said that the expansion is not uniformly valid for
all €. Away from the singular values of the parameter (€), the straightforward expansions are
good approximations and are called the "outer expansions”. The neighborhood of the singular
parameter point is then stretched or rescaled in terms of a new parameter so as to remove the
singularity. The expansion in terms of the new parameter is valid only in the neighborhood of
the singular point and is called the "inner expansion”. The inner and the outer solutions can be
matched where their domains of validity overlap and then a composite expansion can be con-
structed which is valid uniformly throughout the function domain for all values of the parameter

E.




2. THE COUPLED PENDULI

2.1 Singular Perturbation Analysis

Consider the system consisting of two weakly coupled penduli as shown in Figure 1. The
two important parameters are the dimensionless length Al, and the dimensionless coupling
between the two pendulums 8 = R? = (k/m)/(g/l). The dimensionless parameter Al represents the
disorder or perturbation in the individual pendulums. It is important to point out that the dimen-
sionless coupling between the two pendulums § << 1 for weak coupling irrespective of Al. The

resulting eigenvalue problem in symmetric form generated by the above system is given by
Ad=1r0, (1)

wherc8=R2=w§/co§ , o =k/m, co§=g/l,

A=

1+R? -R?
-R?2  R%2+(1+AD7'|°

For small values of , it is natural to expand eigenvalues and eigenfuctions in the regular expan-
sion as powers of d regarding Al as a parameter in the range of interest. Thus we write A, A, and

¢ in powers of d as

A=A, +A8+A82+03), Q)
A=A, + X8+ 482 +0(3%), (3)
0=, + 05+ 0,82 +0O(8°) . (4)

Substituting (2), (3) and (4) into (1), equating coefficients of each power of & to zero, and solv-
ing the resulting sequence of homogeneous and nonhomogeneous linear systems gives the fol-

lowing expansions for the eigenvalues and the corresponding eigenvectors




AMl=1+6+ [(1 +A1)/A1] 5% +0(8%), (5)

AZ=1/(1+AD)+8— [(1+A1)/A1]52 +0(3%, 6)

8% +0(8%), 7)

0
o = ¢ + 3+ 0
0 - [(1 +A1)/A1]C 0

0 _
¢2=[ ]+ [‘“A’)’NJC‘ 8+[g 5% + 0@ . ®)

0

In (7)-(8), C and C,; are arbitrary constants. The expressions (5) - (8) are the regular (oute;)
expansions of the eigenvalue problem for small coupling 8 which depend on the parameter Al.
These are valid for sufficiently small § for all values of Al. When Al = 0, (5) - (8) become
unbounded and the continuity of eigenvalues and eigenvectors with respect to the perturbation Al
breaks down. Thus, in the neighborhood of Al =0 ihe expansions (5)-(8) become nonuniform
and singular or non-analytic points have therefore been identified. These eigenvalues in (5) and
(6) are plotted in Figure 2 for some small but fixed § as a function of Al. Each eigencurve has
two branches, one valid for Al >0 and the other for Al < 0. These branches are indicated by the
superscripts ‘+’ and ‘-’ and correspond to A/ > 0 and Al <0, respectively. Note that since Al and
d have been treated as two independent parameters there is no control over expressions (5) - (8)
in the limiting process when Al — 0 and 8 — 0. By stretching the neighborhood of the singular
parameter value A/ = 0 and by taking into consideration the nature of the singularity we can find
an exact relation between these two parameters. Then A/ and § become dependent in the neigh-
borhood of the singular parameter value, called the "inner region". The solutions of the problem

in the inner region are called the inner expansions. Asymptotically matching the inner and the




outer expansions, and combining them appropriately then gives the composite expansions which
are valid throughout the interval of interest in Al for sufficiently small . Before finding inner
expansions for the eigenvalues and the eigenfunctions, we mass normalize eigenfunctions ¢! and

? to get a unique set of eigenfunctions

[ —Al 0
Oh= | VAIZ+(1+ A8 |+ 1+Al §+0(8%, )
0 VAIZ + (1 + Al
[ 0 1
om = Al +| Vet+a2 [5+0@Y. (10)-
(1 + AHNS? + Al 0

In the inner expansion, we assume that the physical parameters R?=§ and Al =€ are related
(dependent) by a set of mathematical parameters &;, &,, &3, . . . and pu through a "stretching”

transformation of the form
e=e, +EU+ T &MY, (11)
=0

where W is a new small parameter that is defined by:
8(u) = (sgnd)u® . (12)

For fixed {, the quantity & serves as the internal variable. The positive constants a and b are to
be determined by the nature of the singularities of the characteristic equation F(A,€,8) =0 of (1)
near € = €,, where €, is the singular point of interest. Let the eigenfunctions ¢ and the eigen-

values A be written, in the inner region, as the expansions




0(€.5) = 2(e(w),81) = 2G1) = X zi , (13)
' =0

A€, 8) =AEeW).0(W) =Q (W) = f‘, Q. (14)
0

Note that for the pendulum problem F(A,€,0) =0 has a singular point at € =€, =0. The expan-
sions (13) and (14) are the "inner expansions” and the zj’s and Qj’s are called the "inner
coefficients”. Substituting (11), (12), (13), and (14) into (1) simplifying the inner expansions
with a = b = 1, and solving the sequence of eigenvalue problems obtained by equating each

ower of L to zero, we obtain the following inner eigenvalues Q!,Q? and inner eigenfunctions
g

z! and 22 -
‘1;2
Ql:l’L[H&zgzﬁk4 ]’H 1+[§+\/§2+4 r p2+os), (15)
2
52
-\, 2.
Q=1+ (z*é'za 4 }u+ s [_€+w/§2+4 ]Z uZ+0@?), (16)
2
S
2! =a, [1}4- 1+ |p+0W?), (17
0
b,E2m?
2> = b, m* 1+m? |k+0W?), (18)
0

where Al=e=Eu, §=R?*=y,

k=§+\}gz+4
2

, (19)
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2.2, 12
V{ik+ ?—f—k%} + (1 +Ep)?

1

22, 12
‘\/[m+§:“m§] +(1+Ep)?

(20)

QL

(22)

Here the eigenvectors z! and z? have been mass normalized. Keeping u fixed and taking the

limit |&] — oe, it is easy to see that Q' matches asymptotically with AL for & — oo, and with A2

for & — —eo. Similarly the inner solution Q? matches asymptotically (|& — o) with A} and A2.

In fact, it can be easily shown that the outer eigenvectors ¢., and 62, match with the inner eigen-

vectors z' and z? in exactly the way the eigenvalue branches match. The composite expansions

for the eigenvalues and the eigenfunctions are now obtained by combining the inner and the

outer expansions, and subtracting the common part of the two expansions. The resulting expres-

sions for the

1 =
>\comp =

+9

(

eigenvalues and the eigenvectors are

-

1
1+Al

+5- [1+%J82 (1-uAh) + 1+8+{1+317}82 u(Al)

(Al/8)?

2

2

1+{2 (AI/B) + N(BLB) +4}5+ | +[(A1/15)+\/(A1/8)2+4] &
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~(1 - u(AD) (1 - Al + Al? + 85— (1+1/ADS?*) = (1 + 8+ (1 + 1/ADS)u(Al) +O(S*)

2 A lszla- 1 i+ L s
Adomp = [1+0+ [HAI]S (1-uAD))+ 1+Al+8 [1+A1 &% [ uw@D
(Al/8)?
_\/ 2 p)
+<1+[2'(A1/5) 2(A”8) +4 ]8+ 1+[(A1/8)+‘J(A1/8)2+'4"] 52 b
2

—(1-u @A) +3+(1 + -/;—1)82)-U(A1)[1 ~Al+AI?+8-(1+ é)52]+0(53) ,

[ 1
-1+98/2Al 723-
Olomp =2 + (AR + (1-u(ADIOF ~u(AD | &\ 53—3 o ss2
( )
r 8 1
2
Al [1 + 2212 ] _‘L

_[l—u(Al)}1 + Y ) ;_’_0(82),

1 S(1+ —)

52 2Al
1+ —— L
2412

which simplifies to

4 3

~ k2A12/82
¢éomp=ao1[ },, 1+k2  |8:+0(Y),

(23)

(24)
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and

( 3
1 | miale?

¢<2:omp=b01 [IJ + 1+m2 dr+ 0(62) ’ (26)

0

\ J

where k, m, a,, and b, are already defined in equations (19), (20), (21) and (22) respectively and,

1, Al20
U(N)—{O, Al <0’

The composite solutions (23) - (26) of the eigenvalue problem (1) are the asymptotic approxima- —

tions for small coupling 8, and are uniformly valid for all mistunings Al

The eigenfrequencies léomp and lg‘,mp, obtained by the singular perturbation analysis, are
plotted in Figure 3 as a function of the parameter Al. Since the coupled penduli system is sim-
ple, exact expressions for the eigenfrequencies are easily obtained and they are also plotted in
the figure. The exact solutions for the eigenvalue problem are given in the Appendix. Clearly,
there is an excellent agreement in the exact frequencies and their asymptotic approximations.

The asymptotic solutions also clearly display the veering phenomenon.

We now study the behavior of eigenvectors for the case of weak coupling when Al ~ 0.

2.2 Eigenvector Rotations and the Sensitivity Function

In our earlier work [6] with mistuned cyclic systems, it was suggested that localization of
modes can be investigated by considering the sensitivity function, and the rotations of eigenvec-

tors under variations of parameters. The sensitivity function of eigenvectors or eigenvector sen-




sitivity, in short, is defined as

|| Sul] = \tr(S3S,)  (Frobenius norm),

where S, = u;'Au, S; denotes the complex conjugate of transpose of S, U, is the modal matrix

of eigenvectors for zero coupling (8 =0), ‘tr’ denotes the trace of the matrix, and Au=u-u,
where u is the modal matrix for nonzero coupling (3 # 0). The eigenvector sensitivity evaluated

for the pendulum problem turns out to be

1
[ISy]l = — \F‘Pn‘PPz:)z"'(Pu +Py)? +(=Pj3 +Pp)? + (P2 +P2)* 27
\ji- )
where -
1 aki(An?
P =-ak+ + ,
e T 1+ 1)
P = L, b,m(Al)?
=b,m - .
27T s+ md)
)
P21= I
V2
x’zz=b°— L

\/2_ .
We can also define the angles between the eigenvectors o) and ¢2 for the unperturbed (8 =0)
system, and the eigenvectors ¢};°mp and ¢b§omp for the perturbed system. These angles are given

by

<¢cl;v¢éomp> - l-Pl

1 1 - '
”4’0“” @comp“ \[2_1’1 +p%

cos0; = (28)
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2,02 1-P
cos By = <¢20 ¢ei;np> - 2 ,
IEHN ¢comp" \[2--\,1 +p%
where
2
P1= + kz(Al)z ,
6(1+k*%)
m?(Al)?
P, = —_—
2 * 8(1+m?)

Plots of the sensitvity function of eigenvectors and the cosine of the angle between nominal
(8 =0) and perturbed eigenvectors, as a function of the mistuning Al, are given in Figures 4 and
5, for both the exact solutions and the asymptotic approximations obtained above by the singular.—
perturbation technique. These solutions are in excellent agreement. Figures 4 and 5 clearly
show and confirm the expectation that the eigenvectors for the weakly coupled system undergo
rapid changes in the vicinity of the singular point. Furthermore, either of the two criterion can

be effectively used as a quantitative measure and indicator of the mode localization

phenomenon.

3 CYCLICSYSTEMS

Consider three identical particles, each of mass m arranged in a ring and interconnected by
identical springs of stiffness k.. Assume that all the masses are hinged to the ground by torsional
springs of stiffness k, and that the radius of the ring is r, as shown in Figure 6. As a perturbed
system we consider the case when two of the torsional springs are perturbed by €, and €,. The

eigenvalue probiem corresponding to this system is given by
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a+e —@F -—0?

-w? a+e; —0?|¢=29, 29)

—(,og —0,)‘2: a

wherea= —+ —and @; = — .
m m

mr

As was the case for the example of linear chains, the interest here is in the development of
asympitotic expansions for the eigenvalues and eigenvectors in terms of the perturbation parame-
ters €; and €;. As we shall see the unperturbed cyclic system (€; = €; = 0), has a double eigen-
value and an isolated eigenvalue, and thus, introduction of perturbations is expected to split the
degenerate eigenvalue pair. Expecting that the eigenvector behavior will be governed by th:
eigenvalue behavior, similar to the case of the coupled penduli, we restrict the developments to

expansions for only the eigenvalues of the perturbed three particle system.
The eigenvalue problem (29) results in the characteristic equation

F(A.€;,62)=A3 —(3a+¢; +&,)A% + (3a% +2ae, + 228, + €, €, — 304)A

+ [20)2 + m§(3a +€ +8&)— (% + ag;)(a+ ez)] =0. (30)

First consider the unperturbed cyclic system the eigenvalues or roots of (30) are given by

1 =2 =3
A=A =a+0?, N =a-2w.

The corresponding roots of (31) are

-1 =2 -3
X =X =}, =-2wi.

Thus, there is a coincident pair of eigenvalues and one isolated eigenvalue. So long as

@? ~ O(1), the two distinct eigenvalue are well separated.
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To study the perturbed problem we first introduce the coordinate transformation X=A-a,so

that equation (30) results in
3 2 4 4052 _
X = (E1+€2)x° + (€18, = 3wc)X + 0 (20; +e+€3) =0 (3B
We can express the solutions to (31) as regular functions of the parameters ¢, €,, and @2 by

writing X(€),€,) = Y X; (g1)€b as a power series in €. Substituting the resulting expression in
F0

(31) and proceeding in the usual manner, the expansions for the three roots of (31) turn out to be

2
, 8 1 |ol-g

'z2+ — + — £3 + O(e?), 32
X 2 "8 | ol 3 (€3) (32) _
X = Xo2 + X12€2 + X22€% + O(€}) , (33)
%> = %03 + X13€2 + Xn3€d + O(eD) (34)

where
v = BT w2 +P, " X2 —Xo2€1 — @
Q2=—-, 2= ,
2 Ib—2x026; - 300
Yo = x$2(€1-3%02) + X12(2%02—€1)
2= ’
3xh—2%0261 = 30?
Yos = €1-wf - Py s = 1 X038 - w¢
B=—, 3= ,
2 3x83-2x03€; - 30
x33(€1-3%02) + X13QX03-€1)
in = )

3x8s—2x03€; - 3¢

and
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P, = \90! + 202e, +¢} .

The expressions (32) - (34) are the straightforward expansions of the eigenvalue problem for
small €,. When g; — 0, x' and x? become unbounded and the continuity of the eigenvalues
with respect to the parameter or perturbation €; breaks down. The third eigenvalue x> always
remain bounded and continuity is preserved for all values of €, so long as the interconnecting or
coupling spring constant k. is 0(1). These eigenvalues (32)-(34) are shown in Figure 7. Clearly
g, =0, € =0 is a singular point of the expansions and (32)-(34) are the outer expansions valid

for small €; away from g; =0.

Inner expansions, which are valid in the neighborhood of singular point or the parameter
values where the outer expansions breakdown are now obtained. The expansion process for the
cyclic system is very similar to the one presented in section 2 for the linear chain system. Thus,
the physical parameter perturbations €, and €, are related to a set of parameters &, &,, &3, and u

via a "stretching” transformation of the form
e=Eut+ X &Y, (35)
F0

where i is a new small parameters that is defined by
8(1) = (sgn S)u® . (36)
The positive constants a and b are to be determined by the nature of the singularities of
F(A,€1,€;) = 0 near € =0, the singular point of interest. Let the dependent variable or the
eigenvalue Q(u) = Q(€; (1), €2(W)) be written as the expansion

=0
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Note that for the cyclic system F(A,€,,e; =0) has a singular point at €; =&, =0. The expan-
sions (37) are called the "inner expressions" and the €;s are called the "inner coefficients”. Sub-
stituting (35), (36) and (37) into (30), simplifying the inner expansions with a=b=1, and perform-

ing the perturbation analysis, the following roots of (30) are obtained

E+DQt - Q)£ Q)

Ql=0?2+Qp+ u2 +0@md), (38)
" 202 VEZ-E + 1
P m ol s Ot QL +HQ—E+1)QE, 2 4+ o) (39)
=W H Ko+ 0W),
. 202 VE2-E+]
3_ o2, | &1 =2 1. 2 3
Q =207 + [ 3 ]u+ [27(03 ](§ =<+ +0@’), (40)
where
\E2 N
g =&, e=u, Q)= G+ 3§ ALY Q= G+D) 3§ 1L

Keeping U fixed and taking the limit |§] — o, it is easy to see that Q! matches asymptotically
with %2 for & — oo and with %! for & — —oe, Similarly the inner solution Q? matches asymptoti- -
cally (|§ — o0) with 1 and %2. As expected, the third root Q3 automatically matches with x>
as no singular behavior is displayed in this case. Now combining the inner and the outer expan-

sions appropriately, we get the composite expansions

xéomp = xz(u(el)) +x'(1-u(gy)) + Q' - u(g;) (common parts of xz , QH

- (1-u(€,)) (common pants of ! , Q)




-19-

X omp = X' (u(Er)) + X*(1-u(er)) + 2 - u(e;) (common parts of x' , 22)

- (1-u(g; ))(common parts of xz,Qz) s
xzomp = x3 ’

1 8120

where u(g;) = {O’ €, <0

Transforming these expansions back into the original coordinates gives the following composite

expansions for eigenvalues

Momp = a+002 + Q) &

(1 + &1 /62)Q% - Q1) - (&1/62)Q1
202 \ﬁl/ez)z -(e1/e) + 1

+

€3 +0(ed), (41)

Aomp =a+0? + Qp €2 +

Q:{'z +€1/62Q7 — (€1 /67 + 1)9%2

202\(e1/e2)? - (E1/e2) + 1

e3 +0(e3), (42)

Adomp = X03 + (X13)€2 + X23(€3) + O(€D) , (43)

where

(/g + )+ \(Er/e2)? - (€1/e2) + 1
1= :
3

(€1/e2 + 1) - \(E1/62) - (E1/E) + 1
2=
3

b
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v = 1k — xme — 0
¥ 3% - 2ame - 30t
g - wi - P
X03 = 2 ’

P, = \[9032 +2m2e, +€2 .

The plots of eigenfrequencies kéomp, kfomp and X?:omp as a function of €; are given in Figure 8a
and 8b. The third eigenvalue Xzomp always behaves as a regular function as is clear from Figure
8a. These results show that for the cyclic system with strong coupling the effect of perturbation
is identical to that for the pendulum problem with weak coupling. That is, the curve veering of
the eigenvalues J\.éomp and ).%omp is almost the same as the curve veering of the weakly coupled
pendulum. Consequently, it is expected that the mode localization of the eigenvectors within the
strongly coupled cyclic system be similar to that in the weakly coupled pendulum problem.
Therefore, the results should be obtained for the singular behavior of the eigenvectors of the
weakly coupled pendulum problem in section 2 should be valid quatitatively for the cyclic sys-

tem.

The coupling constant k. plays a very important role in the eigenvalue veering behavior. For
the cyclic system, k. =0 leads to three coincident eigenvalues as opposed to the case of strong
coupling when only a double eigenvalue appears. The composite expansions obtained earlier
were determined under the assumption that k. ~ O(1). We now use these expansions and
explore the behavior of eigenvalues in the limiting ease of k. = 0. Note that the coupling con-
stant @2 appear in the denominator of the asymptotic expansions (41)-(43). As @? is reduced

the isolated eigenvalue lzomp moves closer to kéomp and X%omp and the variation of A’s with €;
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becomes very rapid, as is evident from Figures 9 and 10. Figure 11 shows the three composite
eigenvalue expansions for small €; and €; as a function of k. (or w?) and the expansions clearly
breakdown in the vicinity of k. = (0. Thus, the composite expansions (41)-(43) are behaving as
outer expansions in the weak coupling limit. It should be possible to now construct uniformly
valid expansions for eigenvalues as a function of the coupling constant k. by one more use of the
singular perturbation technique whereby the neighborhood of k. =0 is stretched and an inner
expansion is developed. The localization and veering behavior of thus obtained composite
eigenvalue expansions, which will be valid for small enough €, for all €; and k., is expected to

be much more interesting and is being presently studied.

4. SUMMARY AND CONCLUSIONS

Singular perturbation technique has been applied to two parameter eigenvalue problems to
obtain uniformly valid algebraic expansions for the eigenvalues and the eigenvectors for two
example systems. Utilizing these expansions, eigenloci veering and the mode localization
phenomenon have been studied. A sensitivity function and the rotation of eigenvectors have
been introduced as criteria to visualize mode localization phenomenon in the vicinity of singular
points. One example, that of the two weakly coupled penduli, represents systems of the linear
chain type with only one weak coupling spring. The example of three mass particles belongs to
strongly coupled systems with cyclic symmetry. For the coupled penduli system, the eigenvalue

and eigenvector expansions are found to be in excellend agreement with the exact results.

It is shown that eigenvalue curve veering occurs both in the weakly coupled penduli and the
strongly coupled cyclic system. The effects of mistuning perturbations which split a pair of

coincident eigenvalues is identical in both the cases. Tl eigenvector sensitivity function and
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the angle of rotation of eigenvectors are shown to be two equally good candidates for visualizing
mode localization phenomenon near singular points. The composite expansions for the per-
turbed cyciic system, which are uniformly valid in the case of strong coupling, are shown to
breakdown in the limiting case when the coupling stiffness goes to zero. This clearly is related

to the fact that all the eigenvalues for the cyclic system in the weak coupling limit are identical.
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APPENDIX

It can be easily shown that the two free vibration natural frequencies w? and the correspond-
ing mass normalized eigenvectors x! for the coupled pendula problem, obtained from the exact

solution of the eigenvalue problem, are given by

2 1 17

1
+ b
1+Al  (1+A0)?

2wi2=2R2+1+m; 4R* +1-

F{'
x!=q |F1 ,

| 1)

FZ'
x2=B X1 ,

_IJ

1

where a= ,

Nl + (1 +An?
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B= ‘
'\ﬁxﬁ)z +(1+AN?

2
1,1 N
=o' map TR T [1+A1]

The sensitivity of eigenvectors is then given by

1
ISl = —\/-2= \R-fhl‘*qﬂ)z +(Qui+a21)? + (qi2Han)? + (Q12+922)°

where

1
Q11=0‘X{1+——-

2

1
Q12=BX%1-——,
'3

1
QI =0-—

5

1
QZ2=‘3‘$'

The angles between the nominal and the perturbed eigenvectors are then




cos 0] =

cos 87 =

1-x}

\/2_\J1+(x}l)2 '

1-x%

\E\/H'(X%l)z
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Figure 2. Outer expansions for ecigenvalues indicating the region of singular behavior;

d=0.01, & =0.005.




2% Exact solution
Composite expansion
5=0.01 )
$=0.001
098 4
0.96 -
0.94 — — — ' ]
-0.0s -0.04 -003 -0.02 -001 0 001 002 003 004 005
Al

Figure 3. Comparison of the exact eigenvalues with those obtained from the composite expan-

sions; 6 =0.01 , §=0.001.




SENSITIVITY

1.8

02r

Figure 4.

04 -03 -0.2 0.1 0 0.1 0.2 0.3 0.4 0.5

Comparison of the exact eigenvector sensitivity with that evaluated using the compo-

site expansions; 8 =0.01, 6 = 0.001.




095

o
O
¥

0.85F

COSINE ANGLE

o
Qo
-

0.75

T

07 A ' : , -
05 -04 03 02 -01 0 0.1 0.2 0.3 0.4 0.5

Figure 5. Comparison of the exact eigenvector rotations with those obtained from the compo-

site expansions; & = 0.01 , 8 =0.001.







14

12

10+

EIGENVALUE

Figure 7. Outer expansions for the eigenvalues of the perturbed cyclic system indicating the

region of singular behavior; k. =2,k =1,6, =0.1,r=1,m=1.




7 ------------------------------ i """""""""""""""""""""""""""" "3
}'COHIP
6F -
5t J
(=5
g 4r R
<
3+ J
2= 4
kgomp
1 " T -
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 € 0.15 0.2
1

Figure 8a. Eigenvilues from composite expansions for the perturbed cyclic system; k. =2,

k=16=0l,m=1r=1




7-2 T T T L 2 4

6.95

6.9

6.85 — l : ' :
02 015 01  -005 0 005 01 015 02

Figure 8b. Behavior of the two eigenvalues kéomp, l%omp showing curve veering for the strong

couplingcase; ko =2, k=1, 62 =0.1, m=1,r=1.




1.5

Acomp
T

k. =0.01
€7 =0.1

i

Figure 9.

-0.3 -0.2 0.1 O O:l 0.2 0.3 0.4

Composite eigenvalues in case of weak coupling; k. =0.01,k,=1,e, =01, m=1,r

=1




7.2 . - —_ . .- ;

6.95

6.9

6-85 A a A a i " i
0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

€y

Figure 8b. Behavior of the two eigenvalues kéomp, x?;omp showing curve veering for the strong

coupling case; k. =2,k =1,6=0.1,m=1,r=1.




10 - - : , . _ _ i
-

2
1 A
kccmp comp

[
T

3
2k Neo® g1 =0.02 )
g1 = 0.1

lcomp

kc x10-3

Figure 10. Behavior of the composite eigenvalues as a function of the coupling parameter k¢;

k=16 =002¢=01m=1r=1




CONTROL AND DYNAMIC SYSTEMS. VOL. 3§

ON THE MODAL STABILITY OF IMPERFECT CYCLIC SYSTEMS

Osita D.I. Nwokah*
Daré Afolabi**
Fayez M. Damra**»*

*School of Mechanical Engineering
***School of Aeronautics and Astronautics
Purdue University
West Lafayette, IN 47907

**School of Engineering and Technology
Purdue University
Indianapolis, IN 46202

[.  Introduction
II.  Topological Dynamics of Quadratic SYSIEMS ......o.vrrerernnenens
IIl.  Bounds on Amplitude Ratios
IV.  Eigenvector Rotations
V.  Examples
V1. Conclusions

References

l. Introduction

An important subject in the dynamics and control of structural systems is the
behavior of structures under transient or steady state excitations. In this work, we
examine the stability of the geometric form of the spatial configuratdon of struc-
tural systems when the structural parameters are subject to small perturbatons,
and the implications of this instability for frequency response. We show that vur-
cularly configured systems which nominally have cyclic symmerry exhibit com-
plicated topological behavior when small perturbations are impressed on them.
We further show that the frequency response of a perturbed cyclic system
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depends considerably on the form of perturbaton. On the other hand, a rectilinear
configuration of nearly identical subsystems does not ehibit modal instability.
Usually, both kinds of systems are implicitly assumed to unaergo similar qualita-
tive behavior under a small perturbation whereas, in fact, the cyclic configuraton
exhibits a very stange behavior, [1].

The distincdon between the behavior of cyclic and rectilinear configurations
under a perturbation is important because many engineering structures are com-
posed of identcal substructures which are replicated either in a uni-axial chain,
or in a closed cyclic formaton where modal control is of interest. Examples of the
former case of periodicity occur in sauctures such as space platforms and bridges,
which have an obvious periodicity of the uni-axial kind. An example of cyclic
periodic systems is a turbine rotor, which consists of a set of nominally identical
blades mounted on a central hub, and often referred to0 as a “bladed disk assem-
bly” [2]. When all the blades are truly identical, then the system is referred to in
the literature as a runed bladed disk assembly. Practical realities of manufacturing
processes preclude the existence of exact uniformity among all the blades. When
residual differences from one blade to another—no marter how small—are
accounted for in the theoretical model, the assembly is then termed a mismuned
bladed disk.

Our primary focus in this investigaton is on bladed disk assemblies. However,
since we approach the problem from a generalized viewpoint, the conclusions to
be drawn will be of relevance to other periodic systems. Therefore, in the sequel,
we borrow the ‘tuned’ and ‘mistuned’ terminology from the bladed disk litera-
ture, and apply it to repetitive systems having cyclic or uniaxial periodicity. Thus,
in a tuned periodic system, the nominal periodicity is preserved, whereas it is des-
royed in a mistuned system.

If we examine the system matrices of the linear and cyclic chains, we observe
a fundamental difference in forms. The dynamical matrix of the linear chain is
usually banded. Banded matrices are frequently encountered in sauctural dynam-
ics. A special form of banded matrices that is of interest here is the tri-diagonal
form a;;=0,/i =/}> 1. On the other hand, the system matrix of a cyclic chain has a
circulant submatrix, or is entrely circulant or block circulant {3]. Circulant
matrices usually arise in the study of circular systems. They have interesting pro-
perties that set them apart from matrices of other forms [4]. We note that all
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circulants commute under multiplication, and are diagonalizable by the fourier
matrix. One of the most important consequences of the foregoing is that the cyclic
chain has a series of degenerate cigenvalues, whereas the eigenvalues of the uni-
axial chain are all simple.

We know that a tuned circulant matrix, having a multitude of degencrate
eigenvalues, lies on a bifurcation set [5]. Thus, the reduction of such matrices to
Jordan normal form is an unstable operadon [6]. Consequently, if a non-singular
deformation due to mistuning is applied to a circulant matrix, then some of the
eigenvectors will undergo rapid re-alignment, if the mistuning leads to a crossing
of the bifurcation set. If however, no crossing of the bifurcadon set takes place,
then the tuned system's eigenvectors will be very stable, preserving their align-
ment under small perturbadons. In contrast, the eigenvectors of 3 tuned banded
matrix, being analytcally dependent on parameters, are not generally disoriented
by mistuning undl the eigenvalues are pathologically close [7].

If one examines the literature in scructural dynamics, it is observed that some
unusual behavior has been reported in the study of perturbed cyclic systems. This
has been the case in various studies of rings [8), circular saws (9], and other
cyclic structures [10]. But that such anomalous behavior is due to a “geometric
instability” inherent in the cycliciry of the tuned system has not been previously
established in the literature, to our knowledge. Indeed, it is often assumed (see,
for instance, [11]) that the linear and cyclic chains would undergo the same quali-
tative behavior under slight parameter perturbations so that small order perturba-
tions of the system matrix will lead to no more than small order differences in the
system response relative to the unperturbed case, if the system has “swong cou-
pling”.

In this paper, we show that such an assumption regarding qualitative behavior
does not actually hold in the case of cyclic systems; that cyclic systems exhibii a
peculiarity of their own under parameter perturbation; that, although a certain
amount of mistuning may produce little difference relative to the tuned datum in
one case, a considerable change could be induced if a slightly different kind of
mistuning is applied to the same cyclic system; that such apparently erratdc
behavior arises in cyclic system, even when the system has “strong” coupling. In
carrying out this work, we borrow from cerrain developments in differential topol-
ogy specifically, from Arnold's monumental work in singularity theory [6, 12-16].
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il. Topological Dynamics of Quadratic Systems

In mistuned dynamical systems, a major concem is to understand which
specific kinds of mistuning parameters. or combinations thereof, lead to unaccept-
ably high amplitude ratos. In this section, we give an indication of the taxonomy
of the different consequences of mistuning in the hope of isolating those that lead
to high ratios.

Consider a mechanical system under small oscilladons with kinetic and poten-
tial energies given by:

T=4x Mt>0, U=%x"Kx>0; x,x#0. 2.1)

Under the influence of a forcing function f (¢), (2.1) produces the following equa-
tions of modon by applicaton of Lagrange’s formula:

Mx+Kx=;, x,fe C" (2.2)

where M and K are symmewic ~d positve definite. A theorem in linear
algebra shows that there exists some non-singular transformadon matrix P such
that:

PTMP =1, and PTKP = A 2.3
where A is a diagonal matrix of eigenvalues whose elements satisfy the equation:
detM -AK) =0 (2.4)
Consequently, by putting
x =Pgq, 2.5)

substituting for ¢ in (2.1), and premultiplying every term of the resultant equation
by PT, we obtain a new equation set:

g+Aq=f", (2.6)
where f’ = PTf. Hence:
Gi+hgi=ffori=12",n 2.7

Systems which can be reduced to the above form are called quadratic systems.
They are called quadratic cyclic systems if, in addidon, M and K are cyclic or
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circulant matrices. Qur basic aim is to determine the nature of the changes in the
dynamical properties of a quadratic system of a given order, under random
differental perturbations in M and/or K. Central to this investigation are the topo-
logical concepts of structural stability and genericity.

Let NV be a set with a topology and an equivalence relation e. An elementxe N
is stable (relatve to e) if the e-equivalence class of x contains a neighborhood of
x.

A property P of elements of N is generic if the set of all x € M satisfying P
contains a subset A which is a countable intersection of open dense sets [17).

Genericity is important 1 our context because a generic sysiem will in effect
display a “typical™ behavior. More concretely if a given generic sysiem gives a
certain frequency response, all systems produced by differential parameter pertur-
batons about the nominal system will also produce frequency response curves
that are not only slight perturbauons of the original nominal response but also
geometrically (isomorphic) equivalent to it. Such systems are called versal defor-
mations of the nominal system [14]. A versal deformation of a system is a normal
form to which it is possible to reduce not only a suitable representation of 2 nomi-
nal system, but also the representation of all nearby systems such that the reduc-
tion mansformation depends smoothly on parameters. The key to establishing ver-
sality, and hence genericity, is the topological concept of transversality.

Let NcM be a smooth submanifold of the manifold M. Consider a smooth
mapping f:I" — M of the parameter space [ into M; and let i be a point in I" such
that f (u) e M.

The mapping fis transversal to N at  if the tangent space to M at f (i) is the
sum:

Ty = fo TTy + TNp,

Consequently, two manifolds intersect ransversally if either they do not intersect
at all or intersect properly such that perturbations of the manifolds will neither
remove the intersection nor alter the type of intersection.

Lemma 2.1, see ref [14].
A deformation () is versal if and only if the mapping £.T — M is transversal
tothe orbitoffary = 0.
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The abov» resuit is crucially important because:

(i) It classifies from the set of all perturbations of a given nominal system,

(i1)

those that do not lead to radically different dynamical properties from the
nominal.

It separates the “good™ from the “bad™ perturbatons and hence enables us
to concentrate our study on the bad perturbadons. Let Q denote the family
of all real quadratic systems in R". The set Q has the structure of a vector
space of dimension #(n(n +1]). [t can be shown that @ also has the struc-
ture of a differentiable manifold [13}.

Let Q, denote the set of quadratic systems having v, cigenvalues of
muldplicity 2, v4 eigenvalues of muldplicity 3 etc. Q, is called the degen-
erate subfamily of Q.

Theorem 2.1, see ref [13].
The transformation £:I" = Q is transversalto Q,.

Consequently, a generic family of quadradc sysi..ns of a given order is given
by a transformation, f, of the space of parameters I” into the space of all quadratic
systems Q, such that f is mansversal to the space of all degenerate quadratic sys-
tems Q.

Hence Q, is the degenerate (bad) set and Q/Q, ‘s the generic set. Observe
that Q/Qy and Q. are transversal. Consequently, the fundamental group of the
space of generic real quadratic systems is isomorphic to the manifold of systems
without degenerate eigenvalues.

The above discussion leads inevitably to the following conclusions:

)

(i)

Radical changes in the dynamical properties of a nominal system occurs
under perturbadons, when the perturbatons take the system across the
boundary from Q/Q, to Q and vice-versa.

Q. is a smooth semi-algebraic submanifold of Q, and can therefore be
stratified into distinct fiber bundles [14]. By a bundle, we mean the set of
all systems which differ only by the exact values of their eigenvalues; but
for which the number of distinct eigenvalues as well as the respective
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orders of the degenerate cigenvalues are the same. Within the degenerate
set, Qy. the crossing from one bundle to another can also lead to radical
dynamical changes. Each bundle is represented by a specific Jordan block
of a certain order. Note that each bundle is also ransversal to Q.

Theorem 2.2, ref (14].

Qv is a finite union of smooth sub-manifolds with codimension satisfying
Codim Qy 2 2.

Theorem 2.2 has the following implications:

(i) Q/Qy is topologically path connected. This means that by smooth parame-
ter variatons, provided that the number of variable parameters is less than
the codimension of @, it is possible to smoothly pass from one member of
Q/Qy to another without reaching any singularity; that is, without
encountering any member of Q,. Such parameter variations will typically
not lead to radical dynamical changes in @/Q,,.

(ii) Because codim Q, 2 2. it follows that a generic one-parameter family of
quadratc systems cannot contain any degenerate subfamilies. Therefore
under one-parameter deformadons of a generic family, some eigenvalue
pairs may approach each other but cannot be coincident (i.e. cannot col-
lide). After approaching each other, they must veer away rapidly, giving
rise to the so-called eigenvalue loci-veering phenomenon [18], under one-
parameter deformatons of generic families. This offers a theoretical expla-
nation for the eigenloci veering phenomenon which has been observed in
perturbed periodic systems without a corresponding phenomenological
base [18, 19]. Furthermore, this phenomenon holds provided the system
has a quadratic structure, irrespective of whether the model arose from a
continuous or discrete structural system [20].

This rapid eigenloci veering can, under the right conditions, produce the mode
localizadon phenomenon [18]. Since the dynamical propertes of any linear
constant-coefficient system are totally determined by its eigen-structure (eigen-
values and eigenvectors), and since the eigenvalues are continuous functions of
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the matrix elements, it follows that radical changes in the dynamical properties of
a given system under differential parameter perturbations ensue principally from
a large disorientatdon between the eigenvectors of the tuned (unperturbed) and
mistuned (perturbed) systems. We study, in Secton [V, the variadon of eigenvec-
tors of generic families under differental random parameter ~erturbatons.

ill. Bounds on Amplitude Ratios
Consider, again, the equaton set for the dynamics of quadratic systems:
Mxy + Kxg=f, 3.1

where M and K are posidve definite matrices. For tuned cyclic systems, M and K
have the additional property of being circulant. Taking the Laplace wansform of
(3.2) under zero inidal conditions, gives:

(Ms? + K)Xo(s) = F (5), (3.2)
or
A(s) Xo(s) =F(s) (3.3)
where A=Ms? + K. Suppressing s in all subsequent calculatons leads to:
Xo=A"'F. (3.4)

The positive definite nature of M and K guarantees that A~} exists for all s on the
Nyquist contour. Under normal operations of the system, suppose A varies to
A + AA := A,. Let X then change to X + AX := X,. Then, for the same excita-
ton force as in the tuned state,

X,=(A+a)-F (3.5)

The physical nature of the system guarantees that A + AA will always remain
symmetric but not necessarily circulant since a true mistuning destroys cyclicirty.
Equation (3.5) can be rewritten as:

X,=(A+AM)  F=(+A'aA) A7 F (3.6)

Substtuting (3.4) into (3.6) gives:
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Xe=( +A™'a4) - x,. 3.7
Normally AA will be a differential perturbation of A, so thay:
p(A~1a4) < 1,
where p(') is the spectral radiys of (). Hence

(I +A4724) = § (-1¥a-taant, (3.8)
k=0

Subsdrudng (3.8) into (3.7) gives:

X, = k}j;o (=1*A Ak x,. (3.9)
Taking norms in (3.9) gives:
I =S (-1)F (A7 k) X, 0
k=0
ST 14Tadnt g, (3.10)

k=0

Let 1A AA N = 7. Because A4 is a differential perturbation of A, it follows
that r < 1. Hence:

BXe M SUXU T rX = UXol 1w rerty .o 4k

k =0
< WXl
= since r < |. (3.1
Or:
HX N [ 1

WXoll = 1=r = |_ja-taay’ (3.12)

Write
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A=D+C=D( +D"'C) (3.13)

where . is a diagonal matrix of the uncoupled system dynamic matrix and C is
the relative coupling dynamic marrix, such that the minimum eigenvalue of
D~! C at any frequency gives the coupling index of the system at that frequency
(21]. If the norms in (3.12) are H™ - norms, then, over the frequency interval Q:

1X ()l

1
=1 <ess.su
] msﬂp

Omax A ()
Omund (W)

£ss.5up
we

(3.14)
Q

1X50) 1l

where Opme () and Omyn(*) correspond to maximum and minimum singular values
of (") respectvely. Note that all the muices and vectors considered above are
funcdons of frequency s=tw.

Because A is symmetric it follows from (3.13) that:

Gmun(A) = Cmin (DU + D7IC))

= Amin(D) * Amin + D7'C),

= dmin(1 + Amin(D7'C)] (3.15)
by the eigenvalue shift theorem, where d p;, is the minimum eigenvalue of D. Let

1X ()l
dmin = 8, and Aqin(D7'C) = Ag. At any frequer~v w, let L ACILTY = [(w).

1 Xg(w) il o

Then (3.14) reduces to:
1
3, = ess.sup [N(w) S 3.16
1 - ess.sup "
weq ||a(@)1 + Ao(@))|

where Q is a frequency interval of interest. In some cases it is possible to define
Q by the semi-open interval Q = [ 0 o). Here Ay is called the coupling index of
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the system. The system is decoupled when Ag =0. It is weakly coupled if
A9 < 1, and is strongly coupled if Ag 2 1. In general, 0 S Ag Ses. Observe that
Ag(k, ) is a function of both the structural coupling &, and frequency ®. Inequal-
ity (3.16) leads to the following conclusions:

(i) The mistuned to tuned amplitude ratio is determined by the maximum peak
of the mistuning strength Gy AA (@), the minimum strength of the weakest
link in the system a(w), and the minimum peak of the coupling index
(strength) Ao ().

(ii) A variadon in rigidity (coupling) affects the rato of (3.16) monotonicaily
for fixed values of Omg(AA) and a. This is because at any given fre-
quency, Ag varies contnuously and monotonically as the coupling is varied
[13].

(i) A reduction in g caused by a reduction of mass of the blades, and/or more
flexible blades, increases the ratio (3.16) monotonically. More specifically,
at any frequency when Ay — 0, from (3.16):

| a(w) |
|6(@) - A4 (@) |

3, Scss.sup[ ] > 1, for OnudA(w) >0, YV weld
wefd

Hence under weak coupling across the frequency interval, the amplitude
ratio depends entirely on the reladonship between the frequency response
of the mistuning strength and that of the strength of the weakest blade in
the assembly. Under these conditions, the maximum amplitude rado will
arise from the blade with the worst mistune {22].

IV. Eigenvector Rotations

In section II, we showed that generic systems Q/Q, will typically have dis-
tinct eigenvalues, while degenerate systems @, will typically have repeated
eigenvalues. To study eigenvector perturbations for generic systems, regular
analytical methods will work, while for eigenvector variations in the system Q,
we require singular perturbadons [23]. Let A € €V be the dynamic matrix
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arising from any system Q, € Q/Qy. Let [ represent the parameter space and let
u € I be a p-dimensional parameter vector. If Codim Q, 27, then for any
u € e R?, where p<r, differential parameter variations in A(u) will not lead 1o
eigenvalye degeneracies. Thus, if the eigenvalues of A(u), given by

A (W), A1), - Aas(u), are distinct when u=0 they will continue 10 remain dis-
tnct when p is small, by continuity arguments.
Let
A(du) = A(0) + 84, 4.1)
where:
8A = by, - 2 AW | w0 (4.2)
/T g

8A can be expanded in Taylor series form as: 84 = AA + higher terms dependent
on W. To a first order approximation we can write the perturbed matrix as:

A =Aq+AA (4.3)
Write
Ag=UAU™ (4.4)

where U is the madal matrix of Ag, and V* = U~! where:

U={uy uz, -1y
and
Vi=viva, ol
with
A =diag(Ay, Ay, -4 Ap).

where ()" is the complex conjugate transpose of (-).
Since Ay is also generic, we can write the perturbed modal expression as:

Ag+A8A =[U +AU)A+AA) (U + AU | 4.5)

where AU is the perturbaton in U resulting from AA while AA is the
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corresponding perturbation in A resultng from AA. Under eigenvector normali-
zation, lu; § =1, and Il 4; + Ay; | = 1. Equadon (4.5) can be solved as:

AgU + AAU + AgAU = UA + UAA + AUA (4.6)

where we neglect second order terms like AUAA and AAAU [24). As a measure
of the eigenvector variations, we begin by writing Ay; as a linear combination of
all the eigenvectors since the eigenvectors span the whole n-dimensional space.
Thus:

n
Ay; = Z lli u; (47)
/=1

AU = UL. (4.8)
Now solving for AA in (4.6) gives:
AA=U1AGU + UV AMAU + U™ Ag AU - A - U™ AUA. 4.9)
Observe that U™ AgU - A = 0, so that
AA = U™' AAU + AL - LA. (4.10)
Notice that the diagonal elements of (AL — LA) are zero. Hence:
AA; = (U™ AAU); = v] AAu;.

To solve for AU, we need L. The off-diagonal elements of L are given by Skelton
(24])

Li=, =0 v A, foriz), ij=1,2 " n,

or:

Lj=Gi-A)" v AAw; foriz),ij=1,2-- n
To determine /;;, observe that the constraint equation Il u; + Ay; I| = 1 contains
l,‘;. Thus

Dug + Au; 1 = (< u; + Ay, u; + Aw; > )P = 1. (4.12)
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ul w; + 2u; AOu; + Au Au; = 1.
But & u; = 1, so that

2u; Au; + Au; Au; = 0.

Therefore:
”n n
Ay; = Z l,;u, = Z [I‘ U + lu H
=1 ] =1
IRl
=x + i wi
where:
X = z lli U,.
;=1
jil
Thus:
3+ Q+2ux)l; +Quix; +xix)=0
Letting:
2 = u:x,-
and
yi = x.x,

gives (on accepting the positive solution of the quadratic):

Li==(L+z)+(1+2}-y)5

(4.13)

(4.14)

(4.15)

4.16)

4.17)

Since the eigenvectors 4; and u; + Au; can be normalized to unity and since each
vector is represented by a magnitude m; and an angle 9;, the natural measure of
modal variations is 8; since m;s1 after normalization. Knowing all the elements

of L, we can now determine 8; as:
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<u;, i +Au;> = Mgl Hu + Au;ll cos ;. (4.18)

But Iyl = lly; + Al = 1.
Hence:

cos 6; = <u;, u;> + <u;, Au;>

L+ ux + LG )

L[]
Leux; +1;

(1+22-y)*, 056, Sw2. (4.19)

Consequently for the occurrence of no vector rotadon under parameter variatons,
we require:

-y =0 (4.20)

x,-'u,- u.»'x; -x;x; = x; (ju; -INx; =0 4.21)

This implies x; belongs to the null space of (;u; - I), that is:

Wl -0 'Y, Liuj=0 (422)
et
where:
Li=(i=A)"t v Md i#]

The nearer the expression (4.20) is to zero, the less the corresponding eigenvector
rotation under the given perturbatdon. Let

n . n .
a; = 2 lj,-u,- (u;u:—l)z l,,-u,-. i=1,2 - n
j=i )=
=i j#i
Then max{a;} gives the eigenvector with maximum rotation.
[

The conclusions are the following:
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a) If the separation between the eigenvalues is very large, (i.c. (A; =};) is
very large for all i,j), then [, is relatvely small ar.4 eigenvector rotation
will be correspondingly small.

b) Ifv; Adw; =0, then eigenvector rotation will also be relatively small, pro-
vided [; # oo,

For example, if Ay is Hermitian as is the case in all quadratic systems, and
AA =al,ae C, then

v, Mu;=0,Vij=12 - n

Thus, idendcal increases or decreases in the diagonal elements of a quadratic sys-
tem will not produce unexpected amplitude excursions [25] because it cannot
produce eigenvalue splittings in formerly degenerate families. Therefore, such
perturbation cannot take a system either across the boundary of the bifurcation set
or across different bundles of Q,. Geometrically, this implies that degenerate
eigenvalues in systems belonging to a bundle in Q cannot be lifted by perturba-
tions that leave the perturbed system in the same bundle of Q. Indeed, define
the eigenvector sensitivity matrix of a quadratic system as

S=AUU =L,

from eqn. (4.8). Defining the eigenvector sensitivity metric measure by

Sp=is1}= ¥ 12

;=1

il
where S is the Frobenius norm of § shows that the maximum eigenvector sensi-
tivity is obtained at the positions of minimum eigenvalue separation, which is not
difficult to compute. Alternatively, (SF)max als0 corresponds to the position of
maximum angular rotation between the tuned and mistuned system eigenvectors.
This condition is evidenced by sarong eigenloci deformations.

If A(w) is a frequency response matrix arising from a generic system, the
eigenvalues A,;(w) and eigenvectors 4;(w) are also contnuous functions of fre-
quency. We can therefore plot the frequency response functions Sg(w) to deter-
mine the fre~1encies at which maximum deformatons take place.
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V. Examples

To illustrate the theory so far developed we consider two examples. The first
is an interconnected linear chain of oscillators. This has been studied by Amold
(13] and more recently by Pierre [18).

Example 1: Mode Localization in Generic Periodic Systems.

Consider a coupled pendulum, as shown in Fig 1, with identical masses but of
different lengths /; and {;, where !, is a perturbation of Iy, i.e., I; = ({; + Al}). If
we put [; =/, then the kinetc energy is given by

T == m{l?6f « (I + Al)? 8] (5.1)

0 |-

while the potental energy is given by

9t 9
U= ml—l‘ +mil + Al)"i%‘ + é"(e, —62)2. (5.2)

2

Fig. 1. Two coupled oscillators.

Under unit gravitarional force, application of Lagrange’s equatons results in the
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equation of motion:
u [:; N [K] [g;] =0 (5.3)
where
_ {ml? 0
=10 m(l + Al)"} 54
and
_iml+k -k
K= 1" mdval? s k]' 3:5)
The dynamic matrix for tne above system is given by
_Iml+k-w?ml? ~k
Alw) = [ & md + &d) + k-l (l + Al)z}' (5:6)
Rewrite A () as:
A(w) = [_‘_‘k ‘b"] (5.7

The characteristic equation of A (@) is given by
AZ-(a+b)A+ (@b -k} =0

Both M and X are symmetric and positive definite. The eigenvalues of A( ) are:

- h)2 2
e sz la=pTeal) 69

Note that A, 2 cannot be degenerate. Thus under one-parameter deformatons, the
cigenvalues can deform but cannot collide.

Indeed,
a1 [ a-b ]
— ==|1+ (5.9)
a2 Vi@ - b)? + ak?

and
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Ay 1 a=b
— ==1|1- . (5.10)
da 2[ V(@ - b)? + 4k?
Hence
2&1-4-&-1 11
da da (.10

LT I R
3a -Zwena-.

The distance between the eigenvalues is given by:

dy =1A; =Ag|= V(@ - b)? + 4k? (5.12)

i

which assumes its minimum value of 2k when a=b or when [ax.-/aa] = 4 This
represents the tuned state of the linear chain. For a fixed mistuning value (a-b),
d; depends essentally on k. If (@~b) is small, it is clear that Sp — e as k — 0.
The modal matrix of the chain is given by

-1 -1
U= . (5.13)
(@=b)=-Vi@a-b) +4k* (a=b)+ V(a =b)? + ak?
2k 2k

O:serve thar u; u; 20, Y k,a,b. Under tuned conditions, a=b, then

U, = [:{ B (5.14)

However, consider the very interesting situation when the mistuning to coupling
ratio is rather large. That is to say:

m—i—b)->l.

Then (a - b)? » k2, and k? becomes negligible in the eigenvector expressions.
Expanding the term under the radicals and neglecting second and higher order
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terms gives:

PAY]
[(a-b)2+k21"'=(a-b)[1+ [afb] ]

L e P
=(a—b)[l+;[a—_b-] + (5.19)

In this case the modal mamix reduces to:

-1 -1
k a-b (5.16)
a-b k

An energy exchange now takes place. The second component of the first mode
becomes vanishingly small while the corresponding component of the second
mode becomes extremely large. This is an exaeme case of classical vibratdon
absorber, and is the mode localization phenomenon. We therefore conclude that
mode localization (or extreme energy exchange) will occur in a generic system
under one-parameter deformadons if the following conditions are satisfied:

« at any frequency w where the system is almost decoupled, i.c., A(@)p = 0.
(Note that A(w)g — 0 as k—=0).

—b>l.

¢ when the mistuning to coupling ratio p

At the localization stage the eigenvalue and eigenvector sensitvities take on their
maximum values, i.e. both 1AA A~} 11} and 1AU U~ 11} have their maximum
values. Localized modes always produce:

lxe I o

-
-

(5.17)

¢ lxgll e )

Example 2: Cyclic Systems.

Consider three identical masses, m, arranged in a ring structure and intercon-
nected by identical springs k.. Assume that all the masses are hinged to the
ground by torsional springs of strength &;, and that the radius of the ring is 7; as
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shown in Fig. 2.
The basic equations of motion of this “ring” is

Mi+Kx=f (5.18)
where
Flkc + I:‘—' ~k, k.
mOO0 k,
M= 8 r(r)z’(’)x , K= -k 2k, + - -k . (5.19)
-k, - k. 2k, + kr—'

— |

(@)

Fig. 2. Models of (a) the cyclic chain, (b) the linear chain
with three degress of freedom.
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Using group theoretic arguments [13], we can easily deduce that the above sys-
tem has degenerate eigenvalues occurring as doublets, by cyclicity of the
corresponding system marrices. Consequently, every quadratc cyclic system
Q. c Qy. Furthermore all perturbatons of the above system preserving the
cyclic structure, leaves the modal geometry invariant (3, 25]. Indeed the eigen-
values of the above system are given as:

x1=—k— A.2=,:’—{+3_,:c‘. k;:;k;-+3kc (5.20)
Write the dynamic matrix of this system as:
[ a -b —bJ
Aglw)= |{-b a =b (5.21)
-6 -b a
where
a=2% +k -0'm, b=k,
We now consider a diagonal perturbaton of the form:
E = diag (e, €3, €3). (5.22)
Then
A () = Ag(w) + E. (5.23)

This would correspond to the realistic situation where there are slight changes in
the values of the ground spring &, depending for example on how the blades are
coupled to the disk in bladed disk assemblies [22]. The major difference between
the behavior of (degenerate) cyclic systems and generic systems are the follow-
ing:

(i) For generic systems, all the eigenvalues and the distance between adjacent
pairs increases as the coupling k. increases. Consequently the probability
of mode localization decreases as k. and hence A(w)q increases. On the
other hand, perturbations which split the degenerate eigenvalue of cyclic
systems turn them into generic systems with pathologically close eigen-
values (7). Hence for previously cyclic systems whose eigenvalues bifur-
cate under perturbations, S¢ is very large. Therefore such systems are
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susceptible to mode locwizaton, independent of the values of the coupling
saength k.. Recall that

Sg =1L II%.
where
ll/ = O',v "k.)—lV: Mu}" i#j,4j=12 - n

(ii) Consequendy the only way to avoid large values of S¢ in such a situation is
if and only if v, AAu, I =0 or in the neighborhood of zero. Perturbations
that induce this conditon are precisely those that will not induce radical
dynamical changes in mistuned cyclic systems. It was already shown that
if A = al, then ilv, Adu;il =0

(ii) Of the remaining possible perturbations those that have
v, AAu;ll = € << | will produce minimum dynamical changes. All oth-
ers for which Ilv] Adu; Il is not small will give susceptibility to mode local-
ization, no matter how strong the interblade coupling.

The following numerical example amplifies the above observations. We con-
sider the case of the so-called ‘strong coupling’, using the following values:
k.=95,k=1,a=20,b=95,e3=0,e,=-0.1, ;=0.1. Clearly, the ratio of mis-
tuning to coupling strength is very small. Now, in order to compute the frequency
response curves, we need some damping to obtain finite amplitudes at resonance.
Assume hysteretic damping of 0.01 for all cases. Without loss of generality, the
response to be computed is the direct receptance, i.e. the response of each node to
individual excitation. We turn the ring into a linear chain by putting
b =k13 =kj =0 in equadon (5.21). Then Ay becomes a tridiagonal banded
matrix.

The frequency response of the tuned and mistuned systems of the linear chain
are shown in Fig 3. The illustration is windowed around one of the resonant fre-
quencies of the coupled system. Notice that, at the tuned state, .ae amplitudes of
nodes 1 and 3 are equal on account of symmetry, while that of node 2 is double
that magnitude.

Because the system is now generic, and therefore exhibits modal stability, all
nodes have almost the same response patterns and magnitudes as in the tuned
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system. This is also the case when we change the sign of e, from =0.1 t0 0.1.

When we repeat exactly the same procedure for the circulant system, a very
different picture is obtained. Fig 4 shows the response of individual nodes com-
pared with the tuned case. This case corresponds to a 2-parameter perturbation,
withe; =0.1,¢; =-0.1, 673 =0.

(a) nodel

40
:
§ 2 III N /\
- ’ \

I’ N -
== =% [
{requency
(b) node? (c) nodel
[} [

Fig. 3. Effect of mistuning on th. response curves of the linear chain. Note the
preservation of the shape of the curves around resonance, and the minimal
difference in the peak amplitudes of the tuned and mistuned systems ( - - - - tuned
syseems, mistuned system).
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(a) nodel

. -

0
ta
. {Y
'k
.
' 1
’ \
R
L \“~
Q9 Les

At

receplance

{requency

(b) nodel (c) nodel

Fig. 4. Effect of two parameter mistuning on the response curve of the cyclic
chain. Note the severe reduction in the amplitude at node 3, which is only 50% of
the tuned system ( - - - - tuned systems, mistuned system).

Notice that the node with zero mistuning (mode 3) now has a reduction in
amplitude of almost 50%. This extremely unequal amplitude distortion (Fig 4) is
the case no matter how small the magnitude of the perturbation is, so long as we
keep the form of mistuning, and the mistuning does not actually vanish.

If we now change the mistuning matrix in a very small way, by making
e,=0.1, we obtain the response curves in Fig 5. We now notice a substantial
difference in the geometry of the curves in Fig 5, compared to those in Fig 4.
Thus, a very small change in the perturbation matrix, now results in a consider-
able difference in the vibration response at the individual nodes. The question of
which node will be most responding, or the one having the least amplitude, is now
not as easy as one would have expected. In Fig 4, it is node 3, while it is node 2 in
Fig 5. In fact, the amplitude of node 3 has been increased by about 100% from
Fig 4 to Fig S, merely by changing only one entry in the system matrix from 19.9
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to 20.1, a change of less than 1% !

The foregoing examples, based on a simpie 3 degrees of freedom model of a
circular ring or disk only, illustrates the instability induced by cyclicity. It is
clear that the qualitative conclusions to be drawn from Fig 4 are inconsistent with
those from Fig 5, although the difference between the two mistuned matrices is
very small indeed. We emphasize that these results, obtained for just a cyclic
chain, are not necessarily applicable to bladed disks in all generaliry, especially
those models in which cyclicity is ignored. However, when bladed disk systems
are well-modeled to include the effects of blade coupling, blade or .isk mistuning
and cyclicity, similar distortions in the geometry of the frequency response curves

can result. The subject is currently under investgation by us.

(a) nodel

i N\
' foquescy
(b) node2 (c) nodel

(X J

Lot

()

Fig. S. Effect of one-parameter mistuning on the response curve of the cyclic
chain. Note the symmetrical unfolding of the degenerate singularity ( - - - - tuned
mistuned system).

systems;
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V1. Conclusions

(1) For generic systems, to which linear periodic chains of oscillators belong,
differential parameter perturbations are significant for the system dynamics
only under weak coupling conditions when the mistuning to coupling ratio
exceeds unity (Example 1). Under all other conditions that do not induce
cigenvalue degeneracy; small magnitudes of mistuning, or the type of mis-
tuning, is irrelevant 10 system dynamics.

(i) For degenerate systems to which a tuned cyclic system with circulant
dynamic matrices belongs, it is not just the mistuning to coupling rato
which is significant in the determination of the perturbed system dynamics.
The type of mistuning assumes a far greater importance than the mistuning
to coupling rato. All types of mistuning that move the system either across
the boundary of the bifurcadon set, or from one fiber bundle of the degen-
erate set to another within Q, will lead to topological catastrophes [15].
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APPENDIX 4

The Stability of Frequency Response Curves

SUMMARY

In this Appendix, we highlight one of the results obtained so far, namely: that the
modes of vibration of cyclic structures are unstable under arbitrarily small
perturbation. This instability is not the usual ill-conditioned problem of
numerical analysis. It has nothing to do with the computational algorithm. The
eigenvector instability results because the perfect cyclic system is “physically ill-
conditioned”, since a very small perturbation changes its dynamics
characteristics dramatically. This is significant because many aerospace
structures have circular profiles. The implication of eigenvector instability for
modal control, forced response amplitudes, sensitivity analysis, etc, therefore
needs further investigation.

Eigenvector Stability, Forced Response, and Turbine Blade Failure

The structural integrity of turbine blades used in jet propulsion systems is
sometimes compromised by the rare, but very dangerous, failure of some "rogue
blades" This problem has been addressed by different investigators of the
mistuning problem. However, they often obtained conflicting results.

This is because the response obtained from each rotor studied by each author
depends on the eigenvectors of the rotor system matrix A. In general, the matrix
A will be different for each model used by each author, although the difference
may be very small. In fact, mistuning is usually small.

However, the problem created by mistuning is not always small. Thus, although
each A in the family is differentiably dependent on the mistuning parameter € in
the neighborhood of the origin of E, the corresponding eigenvectors is not.
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Consequently two almost similar rotors may produce dramatically different
vibration responses, if their respective system matrices are different
perturbations of the same nominal matrix. An effective demonstration of
unstable frequency response curves in a simple 3 degree of freedom cyclic
system is given in the following examples. First, we examine the instability of
eigenvectors, then the instability of frequency response curves.

Numerical Examples Yiustrating Eigenvector Instability

Example 1

At least three coordinates are required to define a cyclic system uniquely.
Therefore, we consider the simplest possible example: a 3x3 circulant matrix
with real elements, a, b € R.

a0 = [

Using the following perturbation matrices, where €€ R is a very small parame-
ter, we can generate two matrices A} =a0 + E; and A; =a0 + E, that are very
close, and such that these depend smoothly on ¢,andas e 5 0, A; 940 « Aj.
Thus, if

N

b b
a b ], (A4.1)
b a

€00 e 00
Ei=1]0 €0 E;=|0 -€ 0 (A4.2,A4.2)
000 0 0 0
then
a+e b b
A] = b a+€e b , (A4.4)
b b a
and

a+e b b
Ay = b a-¢ b, (A4.5)
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Notethat || A; |1 = 11 Ay 1|,where Il-1|I is some norm.

Consider, for an illustration, a situation whena =100, b =45, € =0.1. We can com-
pute the eigenvalues of A, and A; respectively as

A =diag (10.0667, 145.0333, 145.1000) (A4.6)
and
A, =diag (10.0000, 144.9423, 145.0578) (A4.7)

Notice that the eigenvalues of the two matrices are very close. If we now com-
pute the corresponding eigenvectors, we get

9993 -.5004 1.0000

u, =1 .9993 -.5004 -1.0000 (A4.8)
1.0000 1.0000 0
9985 -.2681 1.0000

U, = |1.0000 1.0000 -.2678 (A4.9)
9993 -.7328 -.7313

We now notice a significant difference between the eigenvectors at modes 2 and 3
of matrices A, and A respectively. For example, there is no node (a point where
displacement is zero) in the third mode of U3, whereas there exists such a node
inUd 1-

Example 2
In the second example, we consider the following circulant; its elements are com-

plex but the matrix is not symmetric. It may be regarded as a deformation of a
symmetric circulant.

200 + i(-10) ~-535+i(-5) -95+i(5)
A, =] -95+i(5 200+i(-10) -95+i(-5) (A4.10)
-95+i(-5) =95+i(5) 200+i(-10)

We test for modal stability by computing the eigenvalues
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A, =diag [10 +i(~10), 286.3398 +i(-10), 303.6603 + i(-lO)} (A4.11)

and the eigenvectors
1+i(0) -.5+1i(866) —.5+i(-.866)
U; = |1+1i(0) 1+i(0) 1+i(0) (A4.12)
1+i(0) -5+i(~-.866) ~.5+i(.866)
Now, we apply a very small perturbation to the matrix A, to get:
201 +i(-10) -95+i(-5) -95+1i(5)
Ay=1 -95+i(5) 199+i(-10) -95+i(-5) (A4.13)
-95+i(-5) -95+i(5) 200 +i(-10)
It is clear that the matrices A and A are ‘close’, since || E | | =0, where
-1+i(0) 0+i(0) 0+i(0)
E=A;-A;=] 0+i(0) 1+i(0) 0+i(0) (A4.14)
0+i(0) 0+i(0) 0+i(0)

The computed eigenvalues of A; are:

A; =diag {9.9977 +i(-10), 286.3218 +i(-10), 303.6807 + i( - 10)}A4.15)

Now, notice what happens to the third eigenvector of A; (eq. (A4.12)), as a very
small change is made using E, eq. (A4.13), to transform it to A;. The eigenvector
matrix of A, is:

0.993 + i(0.000) - .474 +i(0.820) -0.556 + i(~.867)
u,=
0.997 + i(-0.000) -.531 +i(0.817) 1.000 + i(0.000)

1.000 + i(0.000) 1.000 +i(—-0.00) - .444 +i(-.861) ] (A4.16)

Again, it should be noted that a very small change in the matrix A; induces a
significant qualitative difference in the eigenvector at certain modes of A, (eq.
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A4.10) compared with the corresponding eigenvectors of A, (eq. A4.16).

From Modal Analysis, sometimes known as eigenfunction expansion, we know
that the forced response amplitudes are related to eigenvectors. Thus, if the
eigenvectors are unstable under arbitrary perturbation, then, the forced response
curves will also be unstable under arbitrary perturbation. This is illustrated in

Figs A4.1 to A4.2 below.
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